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Abstract 

Urban areas present diverse architectural designs, posing challenges for semantic 

segmentation and reconstruction tasks. The complexity arises from the presence of multiple 

peaks, slopes, and variations in roof structures, leading to potential misclassification and 

incomplete representations. The densely packed nature of city centers further exacerbates 

the problem, causing occlusions and interference between adjacent structures, making 

accurate isolation of individual buildings and their sections more difficult. This study 

endeavors to address these challenges by employing state-of-the-art techniques for 

segmenting complex and nearby building borders. The segmentation task utilizes the High 

Resolution Network (HRNet) architecture on the combination of building ground truth 

mask and satellite derived orthophoto, and manually generated borders. These borders are 

instrumental in separating the building prediction mask to achieve heightened accuracy in 

building extraction. The study culminates in 3D building model reconstruction through a 

model-driven approach, enhancing the representation and understanding of complex urban 

structures. 
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Chapter 1. Introduction 

1.1. Statement of Purpose 

In remote sensing and computer vision applications, building segmentation is essential, 

especially for identifying and analyzing complex building structures. Accurate 

segmentation of buildings into their component sections is now crucial for activities 

like urban planning, architectural design, and historic preservation due to the growing 

population and urban congestion. Deep learning techniques have become effective 

building segmentation tools in recent years, enabling exact recognition of intricate 

structural components. 

Building segmentation from aerial or satellite photos has been shown to be an 

invaluable tool for deep learning methods like convolutional neural networks (CNNs). 

In order to identify patterns and features that separate buildings from their surroundings, 

these algorithms are trained using labeled data. Deep learning algorithms can be used 

to identify complex building components and separate them into their component parts 

with a high degree of accuracy. 

The problem statement revolves with identification of complex building components.  

To identify and distinguish different sections inside the complex building, a deep 

learning method has been applied on the generated building borders which is a useful 

information to detect those pixels on the border. Building components can be 

distinguished with the help of borders by using component analysis tools such as 

connected component analysis or watershed algorithm. 
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Building model reconstruction is another significant problem in the field of remote 

sensing and computer vision. Separating the different parts of a structure may be done 

using satellite pictures and trained boundary models. Building model production is 

made possible by the incorporation of Digital Surface Models (DSMs), which improves 

the reconstruction procedure further. In that case, buildings can be modeled more 

precisely. 

The combination of deep learning-based identification and separation of complex 

building parts, along with the integration of DSMs, offers a comprehensive approach 

to building model reconstruction. This method makes use of DSMs for exact alignment 

and reconstruction, component analysis methods for part separation, and deep learning 

algorithms for constructing segmentation. The rebuilt building models help with urban 

planning, architectural design, and numerous geospatial applications by offering useful 

insights into the precise composition, spatial arrangement, and architectural aspects of 

complex structures. 

1.2. Related Work 

An early segmentation method of graph-based segmentation on the edge weights and 

spatial coherence entails creating a graph representation of the picture. A technique 

optimizes the graph and achieves precise picture segmentation using algorithms like 

Graph Cut. The research methodology entails specifying a border measurement 

predicate, creating a productive segmentation algorithm, and exhibiting global 

attributes. A variety of local neighborhoods are employed to identify boundaries 

effectively. In order to segment images meaningfully, the method combines graph 

representation, effective algorithms, and consideration of nearby neighborhoods 

(Felzenszwalb & Huttenlocher, 2004). Watershed segmentation is another early work 
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that simulates floods to divide areas based on local minima and considers pixel 

intensities as a topographic surface. It may be used to a variety of picture formats, 

including grayscale or color, and is frequently used to define objects or borders in an 

image based on intensity gradients. Improvements have been made in order to address 

the shortcomings of the watershed transform in medical image analysis. One 

enhancement is adding past data through a previous probability calculation, allowing 

the system to use more information for better segmentation outcomes. Another 

enhancement is to combine the watershed transform with other approaches, such as 

atlas registration using markers, to increase segmentation accuracy by combining the 

advantages of the watershed algorithm (Grau et al., 2004). 

CNN-based architectures have demonstrated to be quite good at identifying spatial 

relationships and picking up useful representations for pixel-level classification. Fully 

Convolutional Networks (FCN) (Shelhamer et al., 2017) which introduced the idea of 

completely convolutional layers for end-to-end pixel-level classification. The FCN 

model is utilized in a study to evaluate satellite data in conjunction with a Digital 

Surface Model (DSM) to conduct class segmentation. Label is divided into 2 classes: 

buildings and building borders. The addition of height information from the DSM 

improves segmentation outcomes (Schuegraf et al., 2022). Another study introduces a 

novel methodology that employs the SkipFuse-U-Net-3+ architecture for the 

partitioning of architectural structures into segments characterized by geometric and 

spectral homogeneity. The approach entails the prediction of individual building pixels 

and separation lines, followed by the conversion of semantic outcomes into distinct 

instances through the application of the watershed transform. The model is trained using 

pixel-level and topology-conscious loss functions on satellite imagery and Digital 
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Surface Models (DSMs). Empirical findings highlight the effective adaptability of the 

proposed method to diverse geographical regions, surpassing established techniques in 

the production of well-defined building segments characterized by crisp boundaries 

(Schuegraf et al., 2023). U-Net (Ronneberger et al., 2015) uses skip connections to 

collect both local and global contextual information while DeepLab (Chen et al., 2018) 

captures multi-scale characteristics using dilated convolutions. Another study 

introduced InternImage which utilizes deformable convolutions, allowing it to have a 

large effective receptive field for tasks such as detection and segmentation, while also 

adapting spatial aggregation based on input and task information. This reduces the strict 

inductive bias of traditional CNNs, enabling the model to learn stronger and more 

robust patterns with large-scale parameters from massive datasets, similar to the gains 

seen in ViTs. The results demonstrate the effectiveness and potential of large-scale 

CNN-based models in computer vision tasks (Wang et al., 2022).  

In computer vision research, using transformers for semantic segmentation has gained 

traction. The Vision Transformer (ViT) (Dosovitskiy et al., 2020) is a remarkable 

transformer-based model that adapts the transformer architecture for image tasks and 

achieves competitive performance in capturing global context. Another technique is 

TransUNet (Chen et al., 2021) which blends convolutional neural networks with 

transformers to obtain accurate pixel-level predictions. Furthermore, Swin Transformer 

(Liu et al., 2021) has demonstrated outstanding performance in a variety of computer 

vision applications, including semantic segmentation, by quickly capturing long-range 

dependencies and processing high-resolution inputs. These transformer-based models 

show the power of using self-attention processes for complex semantic segmentation 

tasks. Additionally, UNetFormer uses a Transformer-based decoder. UNetFormer 
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leverages the advantages of both UNet architecture and Transformer in a distinctive 

manner to achieve highly efficient segmentation. To ensure computational 

effectiveness, the encoder is implemented using the lightweight ResNet18 model. 

Moreover, the researchers develop a novel global-local attention mechanism for the 

decoder, which enables effective modeling of both global and local information (Wang 

et al., 2022). 

Outline extraction, in addition to image segmentation, plays a critical role in model 

reconstruction. The retrieved building outlines serve as a fundamental framework for 

future model reconstruction. They provide the basis for creating accurate 3D models 

and comprehensive architectural blueprints. These outlines are invaluable in 

understanding the spatial arrangement of buildings, identifying distinct building 

components, and documenting essential architectural aspects. A study is performed 

using normal vector estimation to comprehend the local orientation and geometry of 

the surface on a DSM derived from a satellite picture and filters the vegetation area. 

Then, based on the height difference, it determines the orientation of the roof faces and 

fits a line along the edges (Nex & Remondino, 2012). Another research suggests using 

a U-Net architecture-based semantic segmentation algorithm to extract building 

footprints from high-resolution multispectral satellite pictures and GIS databases like 

OpenStreetMap (Li et al., 2019). Another work focuses on transforming building masks 

into boundary lines and then changing their orientation using orthophoto-derived line 

segments. The postprocessing stage entails recognizing shared characteristics between 

polygon surrounds and OpenStreetMap data in order to improve the polygons, with the 

assumption that building polygons align with the direction of the buildings, supported 

by OpenStreetMap road vectors (Gui & Qin, 2021).  
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The diverse and unique nature of building outlines poses significant challenges for 

training a model to accurately identify ground truth polygons. The variability in 

building shapes makes it impractical to achieve a one-size-fits-all approach, 

necessitating alternative methodologies to address this complexity. Therefore, a study 

proposes a novel method to simplify building footprints in topographic map 

generalization from large to medium scales. This method formulates the simplification 

problem as a joint task, combining node removal classification and node movement 

regression. To accomplish this, the study introduces a multi-task graph convolutional 

neural network model (MT_GCNN) that can effectively learn and address both node 

removal and movement tasks simultaneously. The ultimate goal is to improve the 

efficiency and accuracy of building footprint simplification, thereby enhancing the 

quality of topographic map generalization at medium scales (Zhou et al., 2023). 

In the process of building model reconstruction, researchers frequently depend on point 

cloud data or Digital Surface Models (DSMs) to produce exact representations of 

structures. A study uses robust estimation approach and Support Vector Machine to 

generate the best roof models, assuring accuracy and a model-driven approach (Henn 

et al., 2013). Another study focuses on semiautomatic building model generation from 

vector base maps and format aerial imagery in a large scale (Buyukdemircioglu et al., 

2018). Another study performs a hybrid technique for reconstructing 3D building 

models using WorldView-2 satellite data. Mask refining, building outline extraction, 

decomposition, and roof type categorization are among the techniques used in the 

method, which blends data-driven and model-driven techniques. A roof type library 

with parameter initialization is used. The study adopts a discrete search space and alters 

the optimization approach to identify the most dependable 3D model. In addition, it 
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explores the reconstruction of linking roofs and the interaction between nearby roof 

models (Partovi et al., 2019). Furthermore, a study introduces a novel RANSAC-MPR 

framework for reconstructing buildings from point clouds. The framework uses the 

RANSAC paradigm to iteratively estimate parameters of building primitives from 

planar patches. It enhances primitive selection by utilizing nearest planar sampling, 

increasing the likelihood of successful primitive identification. The approach 

simultaneously determines all parameters of a segmented building primitive and 

employs a non-learning score function for primitive selection. Overall, the RANSAC-

MPR framework offers an efficient and accurate method for building reconstruction 

from point clouds (Li & Shan, 2022). 

1.3. Thesis Structure 

Chapter 2 of this study outlines the processes involved, beginning with the generation 

of building footprints and borders. It further discusses the methodology for separating 

building sections through line extraction. 

In Chapter 3, the experimental findings are provided, along with descriptions of the 

datasets that were employed. The chapter also discusses border creation, training, and 

evaluating state-of-the-art models for both classes of building masks and borders. In 

addition, the technique of creating the building mask is presented, followed by line 

vectorization on the expected borders. Finally, the chapter concludes with an 

experiment on building model reconstruction and evaluation of experiment outcomes. 

Chapter 4 concludes the experimentation with a comprehensive study overview and a 

concise summary of the findings. Furthermore, it provides a thorough examination of 

the limitations encountered during the research and outlines potential avenues for future 

investigations to enhance the study's outcomes.
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Chapter 2. Methodology 

The building reconstruction workflow in this study encompasses several interconnected 

stages, aiming to generate accurate and realistic 3D models of buildings from satellite 

images of urban areas. The process commences with data preparation, where suitable 

datasets containing high-resolution images of urban regions are collected and 

preprocessed for analysis. 

The workflow for building reconstruction in this study involves data preparation, where 

high-resolution urban images are collected and preprocessed. Building mask and border 

segmentation models are trained using HRNet to predict building masks and borders 

for the provided testing dataset. The predicted border results are then vectorized to 

refine borders and extract individual building polygons. Further geometric accuracy is 

achieved through Graph-Cut Labelling for building rectangle orientation refinement. 

The process moves to 3D modeling, where decomposed building rectangles are 

transformed into 3D representations. Consistency in 3D building types is enforced, and 

a novel approach for recovering complex 3D buildings through model-level merging is 

explored. This comprehensive workflow aims to generate accurate and detailed 3D 

building reconstructions from the input images. 

This chapter is divided into three sections that go through the various steps of the 

suggested technique. The first section employs deep learning approaches to generate a 

building footprint and border segmentation model. This entails training a model to 
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recognize and define building footprints and borders based on input data such as aerial 

or satellite images. 

The second section deals with the problem of dividing building components. Following 

the prediction of border pixels from the previous stage, the study applies line fitting 

algorithms to refine and divide the different parts inside the buildings. The study seeks 

to properly discern and designate specific components or portions of the buildings by 

fitting lines to the predicted border pixels. 

The third section in this chapter focuses on fitting a Level of Detail 2 (LoD-2) model 

to the extracted building components. LoD-2 models are more realistic reconstructions 

of the structures, accurately reflecting their geometrical and architectural aspects. The 

project intends to recreate those buildings in a more exact and detailed manner by fitting 

a LoD-2 model to the segmented building components.  
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Figure 1: Workflow starting from model training for building mask and border 

segmentation and resulting in 3D building model reconstruction. 

Beginning with the building model training of building footprints and borders using 

deep learning, this chapter offers a thorough description of the suggested technique. 

Following that, it moves on to separating building polygons using line vectorization on 

the predicted border pixels. The fitting of LoD-2 models to the specified building 

components brings the chapter to a close, allowing for more accurate and thorough 

building reconstructions. 

2.1. Building Footprint and Border Segmentation 

Image segmentation enables the identification and separation of various objects and 

structures within a scene. In the context of building segmentation, it helps to 
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differentiate buildings from other elements like roads, vegetation, and water bodies, 

which may coexist in the urban landscape. Building segmentation aids in automatic 

feature extraction, enabling rapid and efficient mapping of urban areas from satellite or 

aerial imagery. These maps serve as critical inputs for building model reconstruction, 

urban planning, and city management. 

Classification tasks may result efficiently with lower resolution in some circumstances 

since they emphasize overall output without taking the exact location of information 

into account. However, for more complex applications like image segmentation, 

when pixels need positioning, a higher resolution technique is required to extract 

detailed segments successfully. Since HRNet architecture maintains high resolution 

layer from start to end, it enables extract properties. Therefore, this section presents 

model training on HRNet architecture for building mask and building border. 

A cutting-edge network architecture known as High-Resolution Network (HRNet) (Sun 

et al., 2019) is used in this study to examine the extraction of building polygons and 

borders for semantic segmentation task. HRNet introduces a multi-resolution method 

that maintains high-resolution representations throughout the network to solve the 

weaknesses of conventional deep convolutional neural networks (CNNs). Because of 

its distinctive architecture, HRNet is particularly useful for jobs that call for exact 

localization and segmentation, including detecting complex architectural structures. It 

can capture both fine-grained features and global context. 
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Figure 2: A visual representation for HRNet architecture (Sun, Zhao, et al., 2019) 

HRNet design consists of four phases, the last three of which are composed of up of 

modularized multi-resolution blocks. Both a multi-resolution group convolution and a 

multi-resolution convolution are included in these blocks. In order to accommodate for 

various spatial resolutions, the multi-resolution group convolution separates input 

channels into subgroups and executes individual convolutions on each subset. This 

makes it possible to extract features at various resolutions. The multi-resolution 

convolution component facilitates the integration of information across resolutions by 

combining the output features from several branches. HRNet is useful for complicated 

building structures due to its capacity to retain high-resolution representations across 

the network, which maintains spatial information and improves localization and 

segmentation accuracy. 

 

Figure 3: Fusion representation of multi-dimensional layers (Sun, Xiao, et al.,2019). 

Each pixel in the lower-resolution picture is mapped to a block of pixels in the higher-

resolution image during nearest neighbor upsampling. Upsampling maintains these 

crucial qualities while downsampling aids in identifying important elements within the 
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global environment. HRNet achieves a balance between obtaining crucial global 

information and keeping high-resolution features for accurate segmentation. This is 

done by utilizing downsampling and upsampling.  

HRNet design uses 2-strided 3x3 convolutions to reduce the dimensionality of input 

layer. This setup downscales and reduces the dimension of the model by moving the 

convolutional kernel across the input feature map every two pixels. To reduce 

dimensionality of high resolution by 4 times, 3x3 convolution with 2 stride is applied 

twice. The higher-level features from the input feature map can be captured by this 

downsampling procedure. The model uses a basic closest neighbor sampling strategy 

followed by a 1x1 convolution operation to accomplish upsampling. This procedure 

assists in matching the number of channels in the upsampled feature map to the desired 

output. 

In classification problems, the cross-entropy function is a popular loss function to assess 

the difference between expected probability and actual class labels. The model is 

encouraged to reduce the discrepancy between the anticipated probability and the real 

probabilities contained by the class labels by quantifying the average information or 

uncertainty in the predictions. 

In HRNet architecture, Stochastic Gradient Descent (SGD) is used as an optimization 

technique that trains incrementally changing its parameters. With regard to the 

network's parameters, it calculates the gradients of the loss function and updates them 

in a way that minimizes loss. SGD estimates the gradients and modifies the parameters 

in accordance using a subset of training data (mini-batch) in each iteration.  

In conclusion, HRNet is applied in this research to extract building masks and borders 

and segment images. HRNet improves localization and segmentation accuracy while 
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capturing detailed information by keeping high-resolution layers throughout the 

network. Extraction of fine-grained features and global context is possible in HRNet 

thanks to the multi-resolution blocks, downsampling, and upsampling procedures. This 

all-encompassing strategy helps with precise segmentation of complex building 

components and advances picture segmentation tasks. 

2.2. Border Vectorization as Line Segment 

Model reconstruction solely based on building mask prediction often yields suboptimal 

performance in model fitting due to the possibility of considering multiple buildings as 

a single entity. In the process of building mask prediction, the model may result in low 

performance to distinguish individual buildings, resulting in a merged representation of 

multiple structures. Consequently, when fitting a model on such merged buildings with 

diverse features, the resulting model does not accurately reflect reality, as buildings 

possess distinct attributes like height, shape, and roof type. This limitation underscores 

the necessity for building separation before reconstruction. 

The incorporation of building borders helps address this challenge, as they facilitate the 

division of distinct buildings into multiple polygons. By leveraging the information 

from borders, the individual buildings can be correctly delineated, allowing for more 

accurate and realistic model reconstructions. The separation of buildings into their 

respective polygons ensures that each building's unique features are properly 

represented in the reconstruction process, leading to more faithful and reliable model 

fittings. This integration of border information plays a vital role in improving the 

overall performance of model reconstruction and enhances the quality of the final 3D 

models.  
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This section demonstrates how building and border prediction results are used to 

separate distinct buildings and their components. By combining both predictions, the 

method achieves accurate segmentation of individual buildings, enhancing the realism 

of the final 3D models. This approach ensures that each building's unique attributes are 

correctly represented, contributing to advancements in urban modeling and computer 

vision research. 

To identify building polygons and border for each separately, connected component 

analysis is applied and building polygons from building mask prediction result are 

separated with the use of border prediction result. 

Connected component analysis is used to separate the boundaries and constructing 

polygons. Identifying and labeling unique regions or components within an image is 

accomplished via connected component analysis, a fundamental technique used in 

image processing and computer vision. It is a crucial step in several processes, including 

object recognition, segmentation, and pattern recognition. Tracing the boundaries of 

linked pixels or areas with common characteristics like color or intensity is known as 

connected component analysis. 

A starting point is chosen inside the picture to start the procedure. A tracing approach 

is then used to establish the outlines of the related components from this point. Contour 

tracing is a popular technique that repeatedly tracks a region's border by locating the 

nearby pixels or points that make up the contour. This is accomplished by employing 

algorithms like the Moore-Neighbor Tracing or the Freeman Chain Code (Chang et al., 

2004). 

When contour tracing, the algorithm looks at the nearby pixels in a certain sequence in 

an effort to find the following contour point. It is common to use the terms "4 
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connectivity" (horizontal and vertical) or "8 connectivity" (including diagonal pixels) 

to describe the connectedness of adjacent pixels. The algorithm keeps following the 

contours until it goes back to the beginning, signifying the end of a linked component. 

 

Figure 4: Visualization for 4-pixel connectivity on the left and 8-pixel connectivity on 

the right (Label and Measure Connected Components in a Binary Image - MATLAB 

& Simulink, n.d.).  

Each pixel or point has a label indicating that it belongs to a certain connected 

component. This labeling makes it possible to analyze and process the recognized 

components. 
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Figure 5: Building mask prediction on the left and building components in bounding 

boxes on the right. 

In each recognized component, predicted border pixels detected and line vectorized 

with RANSAC line fitting algorithm. RANSAC algorithm is a reliable model fitting 

technique to successfully handle a certain issue or task compared to other methods such 

as Hough Transform. Even in the presence of outliers or noise that might negatively 

impact the accuracy of the findings, the algorithm's main objective is to estimate the 

ideal parameters of a mathematical model that match the presented data. It was first 

proposed in the publication Fischler and Bolles (Fischler & Bolles, 1981).  Researchers 

can use RANSAC to get accurate parameter estimates that fully reflect the underlying 

structures or patterns in the data while reducing the impact of inconsistent or false 

observations. RANSAC is useful in many different domains, including computer 

vision, image analysis, and pattern recognition, where the ability to effectively model 

the data in the face of possible outliers or noise is essential for producing accurate and 

trustworthy results. 

RANSAC is very helpful when working with datasets that could have inaccurate or 

inconsistent data points. It tackles the problem of outliers by fitting models repeatedly 

to randomly chosen subsets of the data, or "inliers," which are referred to as the 
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"inliers." RANSAC can determine the most dependable model that most accurately 

captures the underlying structure of the data by sampling and fitting models iteratively. 

 

Figure 6: Optimal line of RANSAC algorithm is in red dashed line and threshold lines 

in green dot lines where points are in blue plus sign (Dusmez et al., 2017). 

The capacity of RANSAC to handle datasets with a lot of noise or outliers is one of its 

strongest points. It successfully removes these outliers from the model estimate process, 

so they do not unreasonably affect the outcome. RANSAC is a good fit for situations 

where precise and reliable results are necessary because of its resilience. 

In general, the use of connected component analysis for identifying building polygons 

and borders and line fitting using the RANSAC algorithm allows for the precise 

separation and characterization of building sections during the reconstruction of a 

building model. 

2.3. 3D Building Model Reconstruction 

Building model reconstruction in 3-dimensional is one of the challenging tasks in 

photogrammetry. Extraction of the building outline is required for 3D model 

reconstruction, and it is essential for the purpose of constructing comprehensive and 
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realistic 3D representations of urban areas. In order to produce precise and realistic 3D 

building models, model fitting is crucial because it ensures geometric and semantic 

coherence, topological consistency, and high geometric accuracy. It makes it possible 

to produce CityGML LoD2 models and rebuild intricate roofs, offering accurate and 

thorough representations of buildings (Zhang et al., 2021).  

Obtaining building boundaries in the form of polylines while abiding by restrictions 

like orthogonality and parallelism is the main goal of 2D building polygon extraction. 

Building polygon extraction consists of 3 procedures: initial line extraction, line 

correction, and regularization. The study suggests using Douglas-Peucker approach for 

the first line extraction. This procedure is commonly used in the field of computational 

geometry to simplify a curve or polyline. The program finds the point on the curve that 

deviates the greatest from the estimated line segment repeatedly. In the simplified 

model, this point, known as the "furthest point," becomes an important vertex. At this 

stage, the curve is split into two parts, and the procedure is performed recursively on 

each section (Douglas & Peucker, 1973). However, it has the potential to produce 

erroneous and short line segments (Gui & Qin, 2021).  

Using the Line-Segment Detector approach, the regularization phase enhances the line 

orientations, and the line adjustment phase joins and extends these segments depending 

on the main orientations. In order to make fitting simplex models easier, a grid-based 

rectangle decomposition approach is also used to separate large architectural polygons 

into smaller rectangles. Combination of DSM and orthophoto data help to find suitable 

lines and conduct maximum inner rectangle extraction.  
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Figure 7: Processes of building polygon decomposition starting from building outline 

extraction (Gui & Qin, 2021). 

Together, these methods improve building outline extraction and simplification, 

facilitating the rapid and accurate reconstruction of 3D models (Gui & Qin, 2021). 

Basic building models, such as flat, gable, hip, pyramid, and mansard, are used to match 

the extracted building polygons during the fitting step of the 3D model reconstruction 

process.  

 

Figure 8: Model shapes for building model reconstruction (Gui & Qin, 2021). 

The best-fitting model for each polygon is chosen using an extensive optimization 

process that considers the DSM data and other geometrical properties associated with 
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each model. Two processes are used in the post-processing step to improve the building 

models. First, taking into consideration the similarity in color and height of nearby 

structures, Graph-Cut optimization is used to impose consistency in building types. 

This guarantees that different building kinds are represented consistently. Second, using 

model-level merging, which identifies and combines close building rectangles based on 

criteria like height and color variations, complex 3D structures are reconstructed. The 

final 3D renderings of the buildings are created by optimizing the merged models. The 

accuracy and coherence of the building models are enhanced by these post-processing 

techniques (Gui & Qin, 2021).
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Chapter 3. Experiment 

This chapter commences by providing a comprehensive description of the dataset 

employed in the experiment.  It then proceeds to explain the manual process of 

generating borders, followed by the implementation of a state-of-the-art model for 

generating masks. Additionally, the study proceeds to the training phase, where a 

specialized model is developed to accurately classify borders, accompanied by a 

thorough testing procedure. Furthermore, the chapter encompasses the application of 

line fitting techniques on the predicted borders. Furthermore, it describes the 

development of a model for reconstructing the data and proceeds with an evaluation of 

the experiment's outcomes. The chapter concludes with a comprehensive discussion of 

the findings. 

3.1. Dataset 

This research includes satellite photos, Digital Surface Models (DSMs), and binary 

building masks from Trento, Italy (Qin et al., 2022). Satellite imagery captures precise 

information about buildings and their surroundings by providing high-resolution visual 

data of the Earth's surface. DSMs, on the other hand, represent the terrain's and 

constructed buildings' elevation or height values, enabling correct reconstruction of 

building geometry. The binary building masks identify the presence or absence of 

buildings in the images, providing useful ground truth data for segmentation and 

reconstruction tasks. These datasets are critical for effective building segmentation, 
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which involves identifying and delineating individual structures, as well as later 

reconstruction activities, which include creating detailed 3D models of the buildings.  

 

Figure 9: a) Orthophoto, b) building mask and c) DSM for Trento. 

Satellite imagery of Trento contains; RGB image, building mask where pixels over 

building is 1, otherwise 0 and Digital Surface Model (DSM) obtained from satellite 

image (Shown in Figure 9).  

To test model performance, satellite imagery and segmented building mask of London 

was used. This dataset has the same features as Trento, but image patches extracted 

from size of 14434x14407 image with an overlapping pixel of 256 in both vertical and 

horizontal direction and model tested in 1536x1536 size image. 
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Figure 10: a) Orthophoto, b) building mask and c) DSM for London. 

Digital Surface Models (DSMs) developed from LiDAR data are also used in the 

research to evaluate the accuracy of DSMs created from building reconstruction 

models. LiDAR technology works by sending out laser pulses and timing how long it 

takes for the signals to return after reaching the surface of the Earth. The elevation or 

height values of the topography and built-up areas are captured in very precise DSMs 

using this data. For assessing the DSMs produced by the building reconstruction 

models, the DSMs derived from LiDAR are a trustworthy reference. 
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Figure 11: Figures show a) orthophoto, b) satellite derived DSM and c) LiDAR 

derived DSM for Trento and London. 

In conclusion, the datasets used in this study, including satellite images, DSMs, and 

binary building masks, offer essential data for building segmentation and reconstruction 

tasks. They allow for the precise production of 3D models as well as the identification 

and delineation of specific features. 

3.2. Border Generation 

Understanding complex and nearby buildings is the main goal for building 

reconstruction. For that reason, this study starts with building border generation. 

Generation of building borders are made manually via geographic information system 

of QGIS. There are two types of borders. One of them is for the nearby buildings and 

the other one is for complex buildings. The utilization of complex and nearby building 

borders allows for the distinction of different building components and enhances the 

comprehension of diverse structures. As a result, complex building components and 



26 

 

distinct structures can be effectively separated and modeled based on their unique 

shapes. 

 

Figure 12: Two classes of borders are shown in green color for complex buildings and 

yellow for nearby buildings on the ground truth building mask. 

3.3. Building and Border Segmentation Model  

Following the acquisition of building masks and manual delineation of building borders 

into two distinct classes, where class 1 represents borders within a single building and 

class 2 denotes borders between two distinct buildings, a state-of-the-art segmentation 

model is developed to automatically detect these borders within the provided input 

dataset. This section elaborates on the application of the input data and provides 

detailed instructions on the training and testing procedures of the model. Building and 

building border segmentation model is employed with an open-source code package of 

mmsegmentation produced by (OpenMMLab, 2023). 

3.3.1. Building Segmentation Model Training and Testing 

Using a pretrained HRNet model, the building segmentation approach was employed 

on the input dataset. The dataset used to train the model had 31,612 patches of size 

512x512 for training and 3,512 patches for validation. With 160,000 iterations of 

pretrained data, the accuracy for the building class and the world scale were 73.27% 

and 83.54%, respectively. 
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Figure 13: a) Ground truth building footprints and b) the corresponding prediction 

results for Trento and London. 

3.3.2 Border Segmentation Model Training and Testing 

The model was trained with combination of RGB satellite imagery and building mask 

and two classes border as inputs. The dataset consists of 419 image patches, each 

measuring 512x512 pixels, with a 256-pixel overlap in both the horizontal and vertical 

directions. Additionally, there are 46 image patches designated for validation purposes. 

The dataset exhibits an imbalance in the number of samples per class, leading to a 

higher representation of small areas with dense building structures. To address this 

issue, class weights were computed and assigned before training the model, as the input 

labels were found to be imbalanced. 

The HRNet architecture was employed for the model, and the optimization process 

utilized the stochastic gradient descent (SGD) algorithm. The learning rate for the 

optimization was set to 0.01. After the training process, the model demonstrated 
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Intersection of Union (IoU) scores of 8% for complex and 9% for nearby building 

borders. 

In addition to evaluating the HRNet model, another model was trained using UNet for 

comparative analysis. The performances of both models were calculated, and the results 

are presented in Table 1. The findings demonstrate that UNet exhibits relatively lower 

performance in contrast to HRNet. Specifically, the UNet model achieved 

approximately 3% IoU score for complex building borders and 7% for nearby building 

borders.  

Table 1: Performance comparison between UNet and HRNet in terms of F1 and IoU 

scores. 

Model Type Class Name F1 IoU Accuracy 

 

UNet 

 

Non-border 

Complex Border 

Nearby Border 

0.9888 

0.0573 

0.1309 

0.9778 

0.0295 

0.0700 

0.9783 

0.5281 

0.6872 

 

HRNet 

Non-border 

Complex Border 

Nearby Border 

0.9984 

0.1485 

0.1741 

0.9968 

0.0802 

0.0954 

0.9980 

0.1319 

0.3273 
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Figure 14: Figures show prediction results a) from HRNet and b) from UNet. 

Since there are not significant differences between performance of HRNet and UNet 

models, their visual representations in Figure 14 show similarities. 
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Figure 15: a) Ground truth and b) predicted borders from HRNet model are shown 

where green and yellow color indicate complex and nearby building borders 

respectively for Trento. 

The model performed around the same mIoU result of 8% for complex and 9% for 

nearby building border on the testing images.  

The London region has a complicated building structure, and the model, which was 

mostly trained on the Trento dataset, had difficulty properly recognizing the majority 

of borders there. In contrast to Trento, the model performed less well in this complex 

environment, showing decreased performance. 

 

Figure 16: Predicted borders are shown where green color indicates complex building 

borders and yellow color shows nearby building borders from London. 

3.4. Line Vectorization on Border Prediction 

The building masks and borders were subjected to the linked component analysis 

approach at this step. Applying connected component analysis served the objective of 

precisely fitting lines on building components while ignoring other components. Only 

the segmented border pixels that had the same position as the building mask were taken 

into account, and each building component was examined separately. 
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During the component analysis, certain criteria were used to ensure accurate lines. Both 

line components with fewer than 10 pixels and building components with fewer than 5 

pixels were excluded. These criteria aid in the removal of irrelevant or distracting 

components. 

The RANSAC line fitting method was used with a predetermined number of 

5000 iterations, after the component analysis. For fitting mathematical models, 

RANSAC is an effective technique that can precisely predict the ideal parameters based 

on the given data points. 

The midpoint of each line was determined, and the line was then stretched by 30 pixels 

in both directions by utilizing the line coefficients. The method for line extension 

determines if the line extends to 0 pixels in both directions. If the line does not reach 

zero pixels in both directions, the line fitting process is not executed, ensuring that only 

complete lines are taken into consideration. 
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Figure 17: a) Satellite image, b) ground truth building mask, c) building and border 

segmentation result, d) line vectorization result with building mask segmentation map 

(green and blue color represent complex, yellow and red color represent nearby 

building border.) for Trento. 
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Figure 18: a) Satellite image, b) ground truth building mask, c) building and border 

segmentation results and d) line vectorization result with building mask segmentation 

map (green and blue color represent complex, yellow and red color represent nearby 

building border.) for Trento. 

The application of a line fitting criteria presents a constraint where lines are only fitted 

if they intersect regions with zero-pixel values in both line directions within the building 

polygon. To accommodate long and narrow polygons, a line length threshold of 30 is 

adopted, following the exploration of higher parameters. While the line fitting 

algorithm has demonstrated success for many cases, it encounters limitations when 

dealing with large building polygons, leading to suboptimal outcomes in such 
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scenarios.      

 

Figure 19: a) Satellite image, b) ground truth building mask, c) building and border 

segmentation results and d) line vectorization result with building mask segmentation 

map (green and blue color represent complex, yellow and red color represent nearby 

building border.) for London. 

This process accomplishes accurate line fitting on the building components, enabling 

the exact delineation of the structures' borders, by applying connected component 

analysis followed by RANSAC line fitting. This method facilitates the study's goal by 

ensuring the identification and extraction of the desired lines that serve as the building 

borders. 

3.5. Building Model Reconstruction 

A comprehensive approach to building model reconstruction, comprising several key 

steps. The process commences with the initial extraction of 2D polygons, where 



36 

 

building footprints are delineated from the input images. Subsequently, a grid-based 

rectangle decomposition technique is employed to further refine the building 

representation, breaking down the extracted polygons into individual building 

rectangles. To enhance the precision of the model, a graph-cut labeling method is 

applied to refine the orientation of these rectangles. Next stages involve 3D model 

fitting, where the extracted building rectangles are transformed into 3D structures based 

on the input data. Moreover, an essential aspect of the process is the enforcement of 

building type consistency, ensuring that the reconstructed models align with 

architectural conventions and regional characteristics. Lastly, complex 3D buildings are 

recovered through model-level merging, where the fragmented structures are integrated 

into coherent and detailed representations. By systematically combining these steps, the 

proposed approach aims to achieve more accurate and comprehensive building model 

reconstructions, offering valuable insights for urban planning, architectural design, and 

various geospatial applications. 

3D building model reconstruction is processed by an open-source code package of 

Sat2lod2 produced by (Gui et al., 2022). This open-source code is implemented in 

Python for a comprehensive building model reconstruction task. 

Application of initial line fitting detects straight lines representing building outlines. 

Subsequently, a line correction process is performed to refine the detected lines, 

followed by regularization techniques to ensure their consistency and adherence to 

architectural principles. Once the building outlines are obtained, the extraction of 

building rectangles is achieved through a building decomposition procedure. This step 
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facilitates the breakdown of complex building structures into simpler rectangular 

components, which forms a crucial foundation for subsequent reconstruction efforts.   

 

Figure 20: Figures a) and b) show initial building outline extraction and 

decomposition from building mask, c) and d) initial building outline extraction and 

decomposition from our building border detection. 

The outline extraction from building mask segmentation is slightly different for the two 

cases. In Figure 20a), it successfully detects the initial building outline, but in Figure 

20b), it fails during decomposition. Building in red circle shows the decomposition 

result. Conversely, in Figure20c), the building mask segmentation with our method 

extracts the initial building outline, which is then successfully regularized into 



38 

 

rectangles in Figure 20d). The building is shown in a red circle with two decomposed 

rectangles. 

Notably, certain nearby borders have been effectively detected, offering significant 

advantages in automatically identifying nearby buildings and treating them as distinct 

entities during the modeling process. The integration of these detected borders 

facilitates more precise and efficient building model reconstructions, particularly in 

densely populated urban environments. However, it is noteworthy that the current 

approach, relying solely on building masks, considers these adjacent buildings as a 

single entity and fits a singular suitable model. Further refinement and consideration of 

the detected borders may be essential to accurately capture the individuality of 

neighboring buildings within the reconstruction process. 
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Figure 21: Figures present a) satellite image, b) ground truth building mask, c) 

segmentation map of building mask with vectorized border prediction, d) and f) 

building model from building mask, and e) and g) building model from our building 

border detection. 
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The vectorized borders intricately divide the building mask into multiple polygons, as 

depicted in Figure 21c) below, owing to the presence of distinct adjacent buildings 

within the area shown in Figure 21a). Following the reconstruction of the model, Figure 

21d) and Figure 21c) represent the region of interest. The same area within the 

rectangles is further magnified, and disparities are illustrated using ellipses in Figure 

21f) and Figure 21g). 

The results reveal that, in the case of Figure 21f), each of the three building blocks have 

been assigned a unique model for reconstruction, considering that the buildings are 

interconnected. Conversely, in Figure 21g), different models are employed for different 

building components, even though not all buildings are precisely detected as separate 

entities. The number of modeled buildings is more than other. 
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Figure 22: Figures present a) satellite image of buildings, b) ground truth building 

mask, c) segmentation map of building mask with vectorized border prediction, d) 

building model from building mask and e) building model from our building border 

detection. 

The individual modeling of buildings is made easier by the detection of specific 

boundaries made possible by the reconstruction. However, since certain structures need 

merging with neighboring components, simple separation by boundary detection is 

insufficient for complete building modeling. Figure 22a) shows a distinct adjacent 

building in the red circle and Figure 22c) shows that border segmentation and 

vectorization successfully separate the building from the mask. Building mask 

modeling is shown to be successful in Figure 22d) where building mask segmentation 

directly used to model fitting, but using our building border detection enables to 
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separate building modeling, though it requires merging some components later to 

produce a more accurate representation Figure 22e). 

 

Figure 23: Figures present a) satellite image of buildings, b) ground truth building 

mask, c) segmentation map of building mask with vectorized border prediction, d) 

building model from building mask and e) building model from our building border 

detection. 

The inclusion of borders in the building mask is beneficial in the case of complex 

structures such as those shown in Figure 23a) since it helps to divide the mask into 

distinct components. This method ensures an accurate representation of the buildings 
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of interest by preventing the unintended inclusion of non-building regions during the 

modeling stage. 

When utilizing the building mask directly for reconstruction (as depicted in Figure 23d), 

the buildings are considered identical in the red circle, resulting in a unified model. 

However, our building border detection method allows for partial separation of some 

buildings, but with suboptimal performance in border segmentation. Consequently, the 

reconstruction outcome in Figure 23e) exhibits diminished quality owing to the 

limitations of border segmentation and separately reconstructed buildings are shown in 

the red circle. 

Complex building borders are currently utilized exclusively for the purpose of 

separating building components. However, it is important to note that a more refined 

and improved procedure can allow for the merging of these components when 

appropriate. This enhancement in the methodology would enable a more 

comprehensive and accurate representation of the complex building structures. 
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Figure 24: Figures present a) satellite image of buildings, b) ground truth building 

mask, c) segmentation map of building mask with vectorized border prediction, d) 

building model from building mask and e) building model from our building border 

detection. 

Building modeling utilizing building segmentation maps enriched with borders proves 

beneficial by enabling the separation of certain buildings, as exemplified in Figure 24. 

There are many discrete buildings in the area of interest shown in Figure 24a). Building 

modeling with building mask segmentation yields limited models seen in Figure 24d) 
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with a red circle. It identifies all buildings the same and fits a single model on distinct 

buildings.  However, our building border detection seen in Figure 24e) allows for the 

successful separation of a subset of buildings, enhancing the reliability and accuracy of 

the modeling process.

 

Figure 25: Figures present a) satellite image of buildings, b) ground truth building 

mask, c) segmentation map of building mask with vectorized border prediction, d) 

building model from building mask and e) building model from our building border 

detection. 

Similarly, there are adjacent buildings seen in Figure 25a) for London area and during 

reconstruction with building mask segmentation, it fits a single model on adjacent 

buildings shown in Figure 25d). Conversely, our building border detection method fits 

multiple models on the distinct buildings shown in Figure 25e).  
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Figure 26: Figures present a) satellite image of buildings, b) ground truth building 

mask, c) segmentation map of building mask with vectorized border prediction, d) 

building model from building mask and e) building model from our building border 

detection. 
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A reconstruction result for the London area is shown in Figure 26. It is evident that 

there are several adjacent buildings, as highlighted within the red ellipse seen in Figure 

26a). When employing the building mask for modeling these structures, the fitting 

process yields a single model for the combined buildings, as depicted in Figure 26d). 

Conversely, our building border detection method results in the emergence of multiple 

models, as shown in Figure 26e). Despite their adjacency in reality these models are 

treated separately during the reconstruction process. 

The model's performance in London is observed to be lower compared to Trento, 

primarily due to the fact that the model was trained using the Trento dataset. As a 

consequence, the model's ability to generalize to the different architectural 

characteristics and urban landscapes of London is limited. Nevertheless, when 

comparing the building mask alone to the utilization of building borders, the latter 

exhibits improved performance in reconstructing additional building sections. The 

incorporation of building borders proves beneficial in enhancing the precision of the 

reconstruction process, resulting in a more comprehensive representation of the 

complex building structures in both cities. 

3.6. Reconstruction Result Evaluation 

A key factor in deciding the overall precision of LoD-2 building model reconstruction 

is the exact segmentation of buildings, together with accurate outline extraction and 

decomposition. To explore the quantitative correlation between ground truth data, 

building masks, and building masks generated through our building border detection 

method, we utilized the Columbus and London datasets. The evaluation of the resulting 

models' accuracy is conducted using the IOU2 metric, which assesses the precision of 
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2D building footprint decomposition, and the IOU3 metric, which measures the 

accuracy of 3D building model fitting. 

To evaluate the accuracy in 2D; 

IoU2 = 
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 

where TP refers to the quantity of true positive pixels, signifying those pixels that are 

accurately identified as building footprints through both automated extraction and 

manual labeling. FP represents the count of false positive pixels, indicating pixels 

incorrectly identified as building footprints by the automated process. Conversely, FN 

corresponds to the number of false negative pixels, representing pixels that are part of 

actual building footprints but are erroneously missed by the automated extraction. 

Following equation is used to evaluate accuracy in 3D; 

IoU3 = 
TP3D

𝑇𝑃3𝐷+𝐹𝑃+𝐹𝑁
 

Additionally, TP3D is a specific subset of TP pixels. It refers to those true positive pixels 

whose vertical difference, measured in 3D, from the ground-truth LiDAR data falls 

within a margin of 2 meter (Gui & Qin, 2021). 

Table 2: Evaluation result of building reconstruction. 

Region Accuracy Original Mask Border Mask 

 

Trento 

 

IoU2 

 

IoU3 

0.3467 

 

0.2190 

0.4508 

 

0.3039 

 

London 

IoU2 

 

IoU3 

0. 5092 

 

0. 2149 

0. 5013 

 

0. 2163 

 

Table 2 presents the performance comparison between our building border detection 

and original building masks in a 2D and 3D context. The results indicate that our 

method outperform the original masks in terms of 2D performance. Additionally, the 
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same level of improvement is observed for IoU3 in the training area of Trento when 

using our building border detection strategy. However, when comparing the results for 

London, both types of masks show approximately the same level of accuracy. 

3.7. Discussion 

Automated reconstruction of building models remains a challenging task, involving 

various aspects such as identifying building mask and borders, border vectorization, 

extracting outlines, decomposing complex structures, and fitting the models. This 

research introduces a novel method that utilizes the borders of distinct and complex 

buildings to detect buildings and their components separately. While the method shows 

promising results, the model's performance goes beyond relying solely on the 

segmentation map. The study identifies that adjacent buildings may be erroneously 

separated, necessitating the merging of such buildings at their edges. Additionally, the 

current approach struggles to realistically reconstruct complex buildings since it tends 

to model their components independently rather than as an integrated whole. 

Conversely, the performance of the segmentation model during training exhibits 

limitations attributed to the lack of the border class in comparison to the background 

and building classes. Enhancing the model's comprehensiveness could potentially lead 

to improved accuracy by enabling the detection of additional borders within intricate 

urban regions. The introduction of a novel segmentation model has the potential to yield 

more favorable outcome results, thereby advancing state-of-the-art in this area of 

research. 

Furthermore, this investigation suggests that employing an enhanced border 

vectorization method could lead to higher accuracy. The study involves the detection 

of each building component, followed by the application of border vectorization within 
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the corresponding polygon segment. However, it is noted that certain building polygons 

encompass a wide building area, which may result in the failure of line fitting when 

using a threshold approach. These observations highlight the significance of refining 

the border vectorization technique to address such challenges and potentially yield 

improved results in this context.
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Chapter 4. Conclusion 

This research endeavors to address the challenges of accurately identifying and 

separating complex building parts and distinct buildings through the utilization of 

advanced deep learning techniques. The study leverages valuable information derived 

from building borders to effectively detect and distinguish individual buildings and 

their respective sections. Additionally, the research aims to enhance 3D building model 

reconstruction by integrating Digital Surface Models (DSMs), thereby refining the 

reconstruction process, and producing more precise and comprehensive 

representations. The resulting reconstructed building models offer valuable insights 

into the spatial arrangement, architectural characteristics, and composition of intricate 

urban structures, making them a valuable asset for urban planning, architectural design, 

and diverse geospatial applications. 

In the segmentation task, the performance of the complex building border class was 

observed to be lower compared to the nearby building border class. This disparity can 

be attributed to the fact that the complex building border class did not benefit from the 

RGB channels. The complex building borders were encompassed within the same 

building polygon, leading to a lack of distinctive information from the RGB channels. 

Consequently, this limited availability of RGB information adversely affected the 

segmentation accuracy of the complex building border class. 

The utilization of building borders in the current approach exhibits suboptimal 

performance, as it disregards a significant portion of the predicted border pixels. 
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Consequently, the incorporation of building borders does not substantially impact the 

overall results of the task. However, it is worth noting that despite its limited effect on 

the overall performance, reconstruction result seems to be effective on our building 

border detection compared to building mask only. It gives an idea of where buildings 

are distinct or complex.  

Future research endeavors involve enhancing the model's performance by augmenting 

the training process with a more extensive set of building borders derived from the 

building mask. Accurate prediction of building borders holds the potential to facilitate 

precise detection of individual buildings. In addition, the study faces challenges in 

achieving satisfactory line fitting results on the predicted building borders, as it 

selectively ignores borders based on certain parameters, limiting its efficiency. There 

is scope for more efficient utilization of these borders to enhance the reconstruction 

process. 

Furthermore, an alternative approach to improve the study's performance involves 

leveraging additional data sources, such as Digital Surface Models (DSM). Prior 

research has demonstrated successful results by incorporating nDSM data as an 

additional parameter in the border segmentation process (Schuegraf et al., 2022). 

Integrating information from DSM differences may also prove advantageous in 

enhancing line fitting accuracy. Consideration of the geometric properties of buildings 

with DSM, can collectively contribute to improved reconstruction accuracy. 

Another promising alternative is to explore instance-level building outline extraction 

techniques, which could potentially yield higher accuracy in the overall reconstruction 

process. By investigating these alternative approaches, the study aims to achieve more 
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robust and precise building model reconstruction, thus advancing the effectiveness and 

utility of the methodology.
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