
Technische Universität Berlin

Faculty VI Planning Building Environment

Institute of Geodesy and Geoinformation Science

Fakultät VI
Straße des 17. Juni 52

10623 Berlin

Master Thesis

Integration of CityGML-based building
data into an AR environment on a street

view level

Salih Yalcin
Matriculation Number: 409406

02.04.2023

Supervised by
Prof. Dr.-Ing. Martin Kada

Prof. Dr.-Ing. Marc Oliver Löwner

First of all, I would like to thank Prof. Dr.-Ing. Martin Kada, head of the
Chair of Methods of Geoinformation Science for giving me the opportunity to
carry out state-of-the-art research in this field, and Prof. Dr.-Ing. Marc Oliver
Löwner for his support and feedback in his role as my second supervisor.

Special thanks to my friends in TU Berlin. Also a big thanks to my colleagues
at KAYAK. They allowed me to gain industry feedback and work on my thesis
in parallel to my daily tasks and responsibilities at KAYAK.

Last but not least, thanks to my wife Fatma SENER YALCIN and our little boy
Erdem YALCIN for their mental help and for being with me on this journey.
They always made me smile, they gave me encouragement every time whenever
I lost my motivation. Additionally, I greatly appreciate that this master’s study
and thesis were carried out with the financial support and contribution of the
Republic of Türkiye.

I hereby declare that the thesis submitted is my own, unaided
work, completed without any unpermitted external help. Only the
sources and resources listed were used.

Berlin, 02.04.2023

. .
(Signature Salih Yalcin)

Abstract

In recent years, the representation of real-world environments has gained
greater significance. These representations, which are three-dimensional models
of urban environments and their structures, objects, and components, are known
as 3D City Models. They are used for visualization, indoor navigation, infras-
tructure planning, 3D cadastral mapping, and urban planning. 3D City Models
can be derived from a variety of techniques, such as photogrammetry, geographic
information systems, synthetic aperture radar, and volunteered geoinformation.

Despite the availability of various data formats for storing, exchanging, and
visualizing 3D City Models, CityGML and CityJSON are open data formats
from the Open Geospatial Consortium that aim to facilitate the integration of
urban geographical data for various applications. CityGML defines a conceptual
model, while CityJSON is intended to provide greater flexibility.

Augmented Reality (AR) is a technology that overlays digital information
on the real world using a smartphone’s camera and other capabilities. While
many AR applications have been developed for various purposes, AR and mo-
bile applications may have additional potential in other fields. For example, in
urban planning, AR could be used to enhance decision-making efficiency.

In this thesis, a data integration approach was implemented for 3D City and
urban models. The integration of CityGML-based building data into an AR
environment on a street view level was achieved through a client app that was
developed using AR libraries from companies such as Google.

The results indicated that the integration of CityGML building data into
an AR environment is an optimal solution, and the efficiency of this approach
could be improved by using high-level posing algorithms in mobile apps.

Zusammenfassung

In den letzten Jahren hat die Darstellung von realen Umgebungen an Be-
deutung gewonnen. Diese Darstellungen, bei denen es sich um dreidimension-
ale Modelle von städtischen Umgebungen und ihren Strukturen, Objekten und
Komponenten handelt, werden als 3D-Stadtmodelle bezeichnet. Sie werden für
die Visualisierung, die Navigation in Innenräumen, die Planung von Infras-
trukturen, die 3D-Katasterkartierung und die Stadtplanung verwendet. 3D-
Stadtmodelle können aus einer Vielzahl von Techniken abgeleitet werden, z.
B. aus der Photogrammetrie, aus geografischen Informationssystemen, aus dem
Radar mit synthetischer Apertur und aus freiwilligen Geoinformationen.

Trotz der Verfügbarkeit verschiedener Datenformate für die Speicherung,
den Austausch und die Visualisierung von 3D-Stadtmodellen sind CityGML und
CityJSON offene Datenformate des Open Geospatial Consortium, die die Inte-
gration städtischer Geodaten für verschiedene Anwendungen erleichtern sollen.
CityGML definiert ein konzeptionelles Modell, während CityJSON eine größere
Flexibilität bieten soll.

Augmented Reality (AR) ist eine Technologie, bei der digitale Informationen
mithilfe der Kamera eines Smartphones und anderer Funktionen über die reale
Welt gelegt werden. Während viele AR-Anwendungen für verschiedene Zwecke
entwickelt wurden, können AR- und mobile Anwendungen in anderen Bereichen
zusätzliches Potenzial haben. So könnte AR beispielsweise in der Stadtplanung
eingesetzt werden, um die Effizienz der Entscheidungsfindung zu verbessern.

In dieser Arbeit wurde ein Datenintegrationsansatz für 3D-Stadt- und Stadt-
modelle umgesetzt. Die Integration von CityGML-basierten Gebäudedaten in
eine AR-Umgebung auf Straßenansichtsebene wurde durch eine Client-App erre-
icht, die unter Verwendung von AR-Bibliotheken von Unternehmen wie Google
entwickelt wurde.

Die Ergebnisse zeigten, dass die Integration von CityGML-Gebäudedaten
in eine AR-Umgebung eine optimale Lösung ist und dass die Effizienz dieses
Ansatzes durch die Verwendung von High-Level-Posing-Algorithmen in mobilen
Apps verbessert werden könnte.

Contents
1 Introduction 11

1.1 Motivation . 11
1.2 Goal . 11
1.3 Methodology . 12

2 Related Work 13
2.1 3D City Model . 13
2.2 Augmented Reality . 14

2.2.1 Use Cases and Challenges 15
2.2.2 General Applications . 16
2.2.3 Geospatial Applications 17
2.2.4 Visualization Techniques 18

3 Background 22
3.1 CityGML and CityJSON . 22

3.1.1 Software and Libraries . 26
3.2 Android Development . 27

3.2.1 Kotlin . 27
3.2.2 Android Studio . 28
3.2.3 Android Components . 29

3.3 Android App . 29
3.4 ARCore . 31

3.4.1 Coordinate Systems in AR 33
3.4.2 Geospatial API . 33

4 Methodology 36
4.1 Requirements . 36
4.2 App Structure . 38
4.3 Study Area & Data . 41

4.3.1 Data Conversion . 41

5 Implementation 43
5.1 Design . 43
5.2 General App Architecture . 43
5.3 Development of the app . 44

5.3.1 Dependencies & Libraries 44
5.3.2 Splash Screen . 47
5.3.3 Map Screen . 47
5.3.4 Add File Screen . 49
5.3.5 AR View Screen . 49

6 Results 51

7 Conclusion and Future Work 53

List of Figures
1 3D City model applications . 14
2 The differences between reality technologies 15
3 Marker based visualization . 19
4 Image rendering visualization in AR 21
5 CityGML level of details . 23
6 CityJSON file structure . 25
7 Android Studio layout editor interface. 28
8 Android app project files . 30
9 AR Coordinate Systems. 33
10 ARCore Geospatial API principles. 34
11 Concept image of desired application 39
12 AR app workflow. 40
13 TU Berlin main building map . 41
14 App UX design approach. 44
15 Proof of concept design with Figma 45
16 General app structure . 46
17 General development structure components 47
18 3D AR app using ARCore Geospatial API. 51
19 Integrated 3D building data into AR 52

List of Tables
1 CityJSON file components . 24
2 Xiaomi Redmi Note 8 Pro Specifications 37
3 Differences between 3D mesh model and LoD2 Model 42

Abbreviations
3D Three Dimensional

AAB Android App Bundle

AR Augmented Reality

API Application Programming Interface

APK Android Package

BIM Building Information Model

CityGML City Geography Markup Language

CityJSON City JavaScript Object Notation

COLLADA Collaborative Design Activity

GML Geography Markup Language

HMD Head Mounted Display

IDE Integrated Development Environment

JSON Java Simple Object Notation

LIDAR Light Detection and Ranging

LoD Level of Detail

MR Mixed Reality

OBJ Wavefront Object

OFF Object File Format

OGC Open Geospatial Consortium

OHA Open Handset Alliance

PLOY Polygon Data Files

SAR Syntetic Aperture Radar

SDI Spatial Data Infrastructure

SDK Software Development Kit

SLAM Simultaneous Localization and Mapping

UI User Interface

UX User Experience

9

VPS Virtual Positioning System

VR Virtual Reality

XML Extensible Markup Language

XR Extended Reality

10

1 Introduction

1.1 Motivation
In recent years, the use of mobile apps has exploded in popularity, with bil-
lions of people around the world relying on them for a wide range of purposes
such as communication, entertainment, and accessing information. This trend
is expected to continue in the future, making mobile apps a vital platform for
delivering content and services to users.

3D city models, on the other hand, are digital representations of urban en-
vironments that capture the geometric, topological, and semantic aspects of
real-world cities. These models have a variety of applications, including ur-
ban planning, disaster management, and GIS-based services. By using 3D city
models, professionals and decision-makers can benefit from a more accurate and
realistic portrayal of cities, leading to improved outcomes.

Augmented reality (AR) is a technology that superimposes digital informa-
tion onto the physical world in real time. When combined with 3D city models,
AR can provide an immersive and interactive experience for users, allowing
them to visualize and explore the city in a new way. CityGML and CityJSON
are open standards developed by the Open Geospatial Consortium specifically
for 3D city models, and they facilitate the exchange and integration of 3D city
model data between different systems and platforms.

The combination of mobile apps, 3D city models, and augmented reality of-
fers numerous opportunities and applications. The adoption of open standards
like CityGML and CityJSON is crucial for ensuring the interoperability and
compatibility of 3D city model data, which is essential for fully realizing the
potential of this technology. This makes the topic of 3D city models and aug-
mented reality with city information a timely and relevant subject for a master’s
thesis. The potential benefits of this technology are vast and varied, and further
research in this area has the potential to lead to significant advances in a range
of industries.

1.2 Goal
This master thesis aims to explore an answer to the integration of 3D City
and planning models into urban AR applications. For this purpose in mind,
a data integration approach is needed. Although many applications have been
developed for AR, the focus will be the integration of these data for urban
applications.

The goal is to develop an Android app, that is having CityGML-
based building data integrated into an AR environment on a street
view level.

The challenging part of this development process is the integration of the 3D
City and planning models that need to be performed on the either client side
or the server side. Also, data loss is the most crucial thing that should have to
be taken care of when converting CityGML to OBJ.

1.3 Methodology
In order to find an answer to the research questions and formulate those answers,
the methodology has been split up into three components. In the beginning,
a literature study will be done on 3D City Models, AR, and 3D data formats
for the representation of 3D City Models. In addition to those points, the
current state of the art and the developments will be described. Questions
about the use, requirements, and different interests of 3D city models will also
be examined. The second component of the methodology explains why and
which data format was selected as well as the development platform selection.
The implementation phase aims to elaborate the development of a mobile app
that integrates CityGML-based building data into an AR environment on a
street view level.

12

2 Related Work
This Chapter will enhance the understanding of the subject matter, an assess-
ment will be made of the studies related to the thesis topic. In addition to
providing a general overview of 3D city models, an attempt will be made to un-
cover how presentations in various formats have been rendered in regard to the
visual representation of these models and their augmented reality applications.
Initially, the discussion of 3D City models will be addressed in Section 2.1, and
the usage of these models in Augmented Reality applications will be explained
in Section 2.2. Finally, given that the CityGML and CityJSON were used in the
developed application for the purposes of the thesis, Section 2.3 will investigate
how those data formats were working on behalf of using them in the augmented
reality world.

2.1 3D City Model
A 3D City Model is a geometric representation that allows the real world to
be expressed in a digital form. A common 3D City Model could be created
from several techniques, for instance, extrusion from 2D footprints, architecture,
photogrammetry, and volunteered geoinformation. [1] In order to get an accurate
3D City Model there are some techniques that provide that information. Some
of them are photogrammetry, LIDAR, and SAR which get those data without
contacting the real world. [2]

However, technology is developing year by year, and 3D city models are gain-
ing importance in several research areas. Those areas’ purpose is to give more
valuable information than visualization and it can be categorized among a vari-
ety of applications. As shown in Figure 1, the utilization could be summarized
as follow; from infrastructure planning to 3D cadastre, utility management to
solar potential estimation could be some of those application areas. [3]

Although 3D city models play a crucial role in the current projects there will
be more application use cases where people have benefited from the combination
of real-world and augmented world. There will be more demand for these kinds
of applications as shown in Figure 1. [4]

Figure 1: 3D City model applications
[1]

2.2 Augmented Reality
AR is a technology that combines the real world with the virtual world. This
technology aims to enrich the real-world experience by exploring integration
within a digital environment. The more developments in the computer vision
area the more valuable AR to be a more in the future. [5, 6]

Although AR is defined as a virtual technique that combines virtual content
with the real world, which is recognizable mostly with sight, it’s also be ap-
plied to the other senses such as smelling, touch, and hearing. [7] AR achieved
popularity with the help of developments in technology like depth cameras and
computer vision. There are other popular reality technologies that combine vir-
tual and physical worlds for various use cases. These include Virtual Reality
(VR), Mixed Reality (MR), and Extended Reality (XR). VR uses the virtual
world to create a separate world from the real world and the user has a chance to
interact with that world by not contacting the real world. VR is also suitable in
indoor environments to interact with. [8] MR is a technology that mixes virtual
content with the real world but also allows interaction between them. In the
MR experience, the user can see and interact with both the digital elements and
the physical ones. Therefore, MR experiences get input from the environment
and will change according to it. [9] Finally, XR is an emerging technology that
covers VR, AR, and MR technologies and is referred to as an umbrella that
brings all the reality technologies under one term as shown in the 5. [10]

14

Figure 2: The differences between reality technologies
[11]

2.2.1 Use Cases and Challenges

There is a wide range of use cases and challenges in AR applications. In this
section, the information is briefly discussed with the help of the literature.

Predescu et al. developed a platform for gaming purposes using geospatial
aspects. They found that the achievement of the implementation phase was
difficult due to there being many frameworks, commercial ones and some of
them were experimental. All in all, they also found that real-world testing is
challenging in order to do some calibration. [12]

Portales et al. initiated a tentative and low-cost outdoor mobile AR ap-
plication. The 3D photo models were derived from photogrammetry and they
have been integrated into the real world. The introduced prototype includes
required a head-mounted display (HMD) and user navigation has been achieved
by sensors. The study revealed that their application could be useful for several
purposes. Also, they have mentioned that using those applications would be
cost efficient than stand-alone virtual modeling. [13]

Sanaeipoor et al. proposed an AR strategy to place marking and its effects
on urban projects. The overall solutions seem to expose that this technology is
a useful tool in the field of particular place marking and urban design processes.
The paper also demonstrates that AR technology could cover all the people in
charge of public arts as well as the involvement of citizens. [14]

Latino et al. developed a prototype for an indoor augmented reality app that
aims to contribute to stakeholders’ decisions which supports them to pitch urban
design ideas. Their app allows them to visualize 3D objects on flat surfaces.
Developed app tested among test group which is established by the development
team yet to emphasize that this point needs to be improved. [15]

Another augmented app was developed by Cirulis et al. in order to supply
architecture and urban planning. In order to visualize 3D op Their research
revealed that 3D data is crucial for augmented reality apps. 3D AR applications
allowing to understand a city with 3D buildings. [16]

15

Muthalif et al. have made a comprehensive study to investigate the state art
of subsurface utilities. The visualization techniques have been analyzed in four
parts. XRay view, transparent view, shadow view, and topo view. All parts of
this study have been compared in terms of quality of depth perception, occlusion
of the real world, visualization complexity, and parallax effect. Their study has
shown that no single method provides the best visualization in all application
scenarios depending on the type of the application and user requirements. [17]

Positioning on AR apps could be challenging because it requires estimation
and updating real-time of dynamic augmented scenes in. Wang et al. have
proposed a quaternion-based visualization approach to the 2D and 3D vector
data. The study showed that position could be possible with a quaternion-based
approach. Also, in order to improve vector visualization accuracy, the proposed
method fits the AR applications. [18]

Creating virtual environments based on geospatial data is also up to date
subject. Keil et al. has created a virtual environment from open geospatial
data. Their work summarizes that web technologies are having support world-
wide communication and the exchange of data. The rise of spatial data avail-
able for developers makes virtual applications more promising. However, some
geospatial data formats are not supported by game engines. That’s why they
have provided how public geospatial data can be transferred to file formats that
can be understandable by visualization engines. [19]

2.2.2 General Applications

Augmented Reality is a technology in which virtual objects are projected into
the real environment and many data such as location information, 2D/3D data,
video, and audio are transferred. This technology is capable of meeting both
the social and individual needs of users, supporting their education and pro-
fessional development, as it contains advanced software and hardware elements
used today with its wide range of effects. [20]

AR is playing a significant role in many fields such as logistics, education,
architecture, sports, and education.

The use of augmented reality in logistics is mostly found in procurement,
storage, packaging, and transportation processes. The use of augmented reality
technology in the logistics sector has brought a different perspective to this field.
There are many advantages as well as disadvantages in the logistics sector where
augmented reality applications are used. While the use of augmented reality in
the logistics sector has advantages such as saving time, reducing waste, and
determining the fastest route; there are also disadvantages such as the inability
to ensure the confidentiality of the employees in the sector, the negative impact
on the health of the employees in long-term use of the application tools, and
the high cost of the tools and equipment used in the application. [21]

The use of augmented reality technology in architecture; 3D visualization
of design models, quality control, and inspections using different layers of in-
formation, supporting a democratic and collaborative approach supports more

16

successful project formation. Developed companies use augmented reality tech-
nology in architecture, especially to save time and budget. [22]

Educational applications are one of the main areas where augmented reality
technology is used. These applications can be used as educational materials at
all educational levels from primary education to university. Augmented reality
technology is an environment where students can control their own learning by
interacting with the virtual and real world. This technology has advantages
for both educators and students. The use of augmented reality applications in
the classroom increases student motivation and student contribution to learning
outcomes. [23]

Augmented reality technology is used in many different branches by utilizing
object tracking and identification technology in the field of sports. The purpose
of the use is generally; to improve athletes’ abilities, improve their performance,
facilitate their training, ensure that they spend quality time, and increase their
awareness of the games. Such as tennis, cricket, volleyball, soccer, and basket-
ball. [24]

2.2.3 Geospatial Applications

Many industries experience the need for managing their geospatial data dur-
ing the whole life cycle of their assets; especially since their business relies on
geospatial data. This dependence makes AR technology in the geospatial indus-
try compelling. In this section, several GeoAR applications will be explained.

Choi et al. described a way to organize and group geospatial data according
to their tags. They have used manual and automatic approaches as well as the
nearest neighbor algorithm. The study was carried out by implementing an
AR application on an Apple platform. Their study showed that using AR has
advantages, considering a precise but manual approach. [25]

Bharath et al. designed and developed an application to visualize geograph-
ical data through an augmented 3D model. Their work proposes a way to
visualize geospatial globe data using AR technology. They have developed an
android application the scan given marker to show the globe. [26]

Schall et al. developed mobile augmented reality for the visualization of
underground infrastructure using geospatial data. Their study showed that the
potential for improvements such as on-site planning, data capture, and survey
planning is possible using AR with geospatial capabilities. They also stated
that achieving the functionality of AR depends on localization, and integration
of visual tracking in orientation sensor information. [27]

Badard has explained the concept of Geospatial Service Oriented Architec-
ture and its relevance in the definition of distributed and interoperable multi-
representation data infrastructures to enhance the experience of the users in
mobile augmented reality applications. [28]

St-Aubin et al. developed a 3D collaborative geospatial augmented reality
system for urban design and planning purposes, their contribution presents a
system to resolve urban planning problems. The implemented framework allows

17

for developers to simply and quickly create a 3D geospatial augmented reality
system applied to desired urban planning scenario. [29]

Another AR application is annotating the geospatial model which is pro-
viding field workers with redlining capabilities which enable the outdoor user
to annotate and interact with geospatial objects. The fieldworker can choose a
symbol from a predefined palette of symbols. Besides placing an annotation to
a location in the geospatial 3D model, the field worker also has the possibility
to survey locations by intersecting poses with the model. Those developments
help users to have a chance to validate the model interactively. [30]

Using geospatial approaches could also be applicable in the advertising area.
Jamali et al. implemented an augmented approach for indoor advertising. Their
study proposes a framework to apply the capabilities of Ubiquitous Geographic
Information Systems and spatiotemporal modeling to determine the best lo-
cation for installing advertising billboards and signs in indoor environments.
They have used location-based services and have benefited from AR providing
additional information about the ads and creating interactive content. [31]

Kasperi et al. propose and evaluates an alternative model-based method for
dynamic outdoor AR of virtual buildings rendered on non-depth sensing smart-
phones. They have used geospatial data to construct the geometric model of
real buildings surrounding the virtual building method and remove the target
regions from the virtual building using masks constructed from real buildings.
Their study also revealed that participants expressed that their experience im-
proved when using their model. The solutions showed that using geospatial data
for simulating occlusions is a sufficiently effective solution until depth-sensing
AR devices are more widely available. [32]

2.2.4 Visualization Techniques

Application of AR for visualizing 3D buildings has led to many studies over the
past two decades, Yet there are still significant improvements have to be made
before AR can practically be used in 3D building visualization works. Different
techniques introduced to enhance AR visualization of 3D buildings so far, can
be classified into six main categories. Marker based visualization, X-Ray view,
Transparent view, Topo view, Image rendering, and Cross section view. In
the following, the discussion about the principles of the above AR visualization
techniques will be made.

Marker based visualization, is a widely used technique for superimposing
virtual 3D objects onto the real world. In this technique, a physical marker is
used as a reference point to anchor the virtual object in the real world. The
marker is usually a pattern or an image with high contrast and distinctive
features that can be easily recognized by a camera. The camera captures the
marker and computes its position and orientation, which is used to overlay the
virtual object in the correct location in the real world.

One notable application of marker-based AR in architecture is for visualizing
3D buildings. For instance, Camba et al. developed a system and combined
combined with traditional printed materials to enhance the visualization and

18

understanding of technical information. Their method aims to create custom
marker-based AR content using 3D data from real objects and authoring tool
that they developed in house. The system allows instructors to quickly and
effortlessly create their own AR content to support their innovative teaching
practices. [33]

Another example is the use of marker-based AR for visualizing building
models in the context of urban planning. Anagnostou et al. developed a system
called SqquareAR, an Augmented Reality authoring application which enables
virtual restoration of public, unexploited, spaces in cities. The system allows
local residents participate into the decision making process that affects their
everyday life. [34]

Figure 3: Marker based visualization
[35]

X-Ray visualization, is the most popular technique that has been ex-
amined in the past studies to visualize hidden objects/utilities. It provides
visualization of a hidden object inside another visible object. X-Ray View can
also be used for 3D building visualization, which allows architects, engineers,
and urban planners to visualize the internal structure of buildings in a more
intuitive way.

One of the ways X-Ray View is used for 3D building visualization is by in-
tegrating point cloud data obtained from laser scanning technology. This data
can be used to create a 3D model of the building’s interior, which can then be
viewed and manipulated in X-Ray View. This allows users to see the building’s
internal structure and identify any issues or areas that need attention. Another
way X-Ray View is used for 3D building visualization is by incorporating Build-
ing Information Modeling (BIM) data. BIM is a digital representation of the
physical and functional characteristics of a building, and it can be used to create

19

a detailed 3D model of the building’s internal structure. By integrating BIM
data into X-Ray View, users can explore and visualize the building’s internal
structure, as well as its mechanical, electrical, and plumbing systems. [36]

Research studies have shown that X-Ray View can be an effective tool for 3D
building visualization. Avery et al. developed an extension x-ray vision system
for augmented reality that employs multiple view models to support new visu-
alizations to provide depth cues and spatial awareness to users. Their systems
make hidden objects appear to be behind walls and gave user to understand
real world in a more spatial way. [37]

Transparent View, is a visualization method that allows users to see
through the external walls of a building to view its internal structure and layout.
This is accomplished by creating a transparent virtual overlay that is superim-
posed onto the user’s real-world view using augmented reality (AR) technology.
It provides users with a better understanding of the building’s internal layout
and structure. This technique can be particularly useful during the design and
construction phases, as it can help to identify potential issues before they be-
come more costly to fix.

There have been several research studies that have explored the use of Trans-
parent View for 3D building data visualization in AR. For example, a study by
Gomez et al. examined the use of Transparent View to visualize transparent
objects from multiple images with the aim of both discovering such objects
and building a 3D reconstruction to support convincing augmentations. Their
study shown that participants were able to use Transparent View to gain a
better understanding of the internal structure of the building and its historical
significance. [38]

Image rendering, is a visualization method that uses 3D models to create
realistic images of buildings that can be integrated into the user’s real-world
view using AR technology. This approach can help to provide users with a more
accurate and detailed view of the building’s exterior appearance and features,
such as its texture, color, and materials.

Wen et al. developed an AR system that renders images when using un-
manned aerial vehicles to visualize 3D buildings as shown in Figure 4. Their
study found the system has the potential for discovering unnoticed detail prob-
lems in real construction site, such as vehicle path planning conflicts and struc-
ture spatial dilemmas by image rendering on AR. [39]

20

Figure 4: Image rendering visualization in AR
[39]

21

3 Background
In general, an Android application can be split into four essential components,
activity, services, broadcast receivers content providers. The following section
elaborates on fundamental methods for this thesis and related topics of mo-
bile application development, especially with Android. Related techniques or
terminology are additionally provided if required.

3.1 CityGML and CityJSON
CityGML is an OGC standard and defines a conceptual model and exchange
format for storing, exchanging, and representing digital 3D City models. [Open
Geospatial Consortium, 2012]. The aim of CityGML is to integrate geodata for
a wide range of applications for smart cities and digital twins, as well as urban
and rural planning. The CityGML standard has versions 1.0, 2.0, and the latest
version 3.0 which is the evolution of the previous versions. Although previous
versions standardized a GML exchange format while CityGML 3.0 standardizes
the information model, and can be implemented in a variety of areas. [40]

The CityGML is modular, with various thematic modules that can be com-
bined to create a profile that suits specific applications. The core module defines
base classes for all features in CityGML, while the relief module provides terrain
representations. The transportation module supports route planning and trajec-
tory planning for mobile robots, and the water body module provides boundary
surfaces for water bodies. The vegetation module models solitary vegetation ob-
jects and supports analysis tasks, while the land use module provides an areal
representation of land use. The City Furniture module represents immovable
objects like street lights, traffic lights, and flower containers, and the Generics
module allows for the extension of the CityGML model. All features defined in
the modules have attributes and geometrical representations in different Levels
of Detail (LoDs), with the shared attribute relativeToTerrain explicitly repre-
senting the relation of a feature to the terrain surface, which is crucial for many
applications. [41]

The CityGML data model could be decomposed into a core module and sub-
modules such as bridge, building, CityFurniture, CityObjectGroup, Generics,

Figure 5: CityGML level of details

LandUse, Relief, Transportation, Tunnel, Vegetation, and WaterBody. Each
sub-modules covers a different part of city objects. [40]

CityGML 2.0 has been adopted for a wide range of applications, and although
it’s providing powerful information, OGC brought a new CityGML version that
combines CityGML 2.0 modules with newly added modules and as well as re-
vised modules. New modules could be called on top of CityGML 2.0 modules
with Dynamizer, Versioning, PointCloud, and Construction. Core, Generics,
Building, and Transportation modules have been also revised. New CityGML
3.0 applies a model-driven approach in the creation of the data model and ex-
change formats. The new concept for CityGML counts all city objects to the
space and space boundaries. Space could be identified as the real world’s data
such as buildings, water bodies, and trees. A Space Boundary is an entity with
an areal extent in the real world. [42]

As shown in Figure 5, the CityGML also has 5 levels of details. LoD0 is to
show footprints, LoD1 is to show a block model of the building. LoD2 to show
the coarse exterior of the building. LoD3 is created to give information about
the fine exterior of the building. In that part of the level of detail, the building’s
properties such as windows, and roofs are visible. LoD4 is showing the interior
of the building on top of information coming from the other level of details. [40]

CityGML has three exchange format so far. The latest version is CityGML
3.0 is an improved version of 1.0 and 2.0. While older versions standardized as
GML format, CityGML 3.0 standardized to be information model. Allows data
to be stored in GML’X́ML format as well as JSON format. [43]

CityJSON is an open standardized data model for 3D Cities storing, exchang-
ing, and representing, which is extended from CityGML(version 3.0) based on
JSON. Although GML encoding CityGML offers complex encoding, the aim of

23

CityJSON is to offer an alternative way to be easy to use, faster, and compatible
to platforms like the web and mobile. [44]

The first level of the CityJSON file contains the entire CityJSON object.
The property metadata usually contains a reference system that always applies
to the entire CityJSON file as described in Table 1 The property city objects
contain a collection with key-value pairs. The key is the ID of the city object and
the value is the city object. The property attributes handle normal attributes
and the generic attributes. The property geometry of the city object contains
an array of geometric objects. The property semantics of the geometric object
contains a semantics object. The property surfaces of the semantics object
contain an array of semantic surface objects. [45]

CityJSON Object Properties
Name Requirement Description
type must The value must be string. "CityJSON"
version must The value must be string with the version (X.Y) of

the used CityJSON schema.
metadata may The value is an object with properties describing the

metadata.
cityobjects must The value contains a collection of key-value pairs.

The key is the ID of the object and the value is city-
object.

vertices must The value is an array with the coordinates of each
vertex used in the CityJSON File

transform may The value is an object describing in which way the
coordinates can be transformed to integer values.

Table 1: CityJSON file components

The structure of CityJSON is easily understandable as it could be read by
humans shown in Figure 6

Upon reviewing the literature, it becomes evident that investigations and
analyses utilizing CityGML and CityJSON have been conducted across numer-
ous disciplinary applications, outputs various outcomes. One of them is Bili-
jecki et al. have investigated whether an automatic conversion is possible among
CityGML and OBJ files. Their investigation revealed that for simple conver-
sions proposed method is compelling. However, the conversion method can not
differentiate between a roof, and a terrace or garage top. The more requirements
become advanced, the more complex method will require to do this automatic
conversion. [46]

On the other hand, Blut has developed a mobile app that converts CityGML
using XMLPullParser and shows used data on smartphones using a viewer that
extended from game engine alternatives. The study emphasizes that showing
CityGML on smartphones challenges handling complex 3D objects, not only in
terms of memory but also storage space, mobile processing units, and display
sizes. [47]

24

Figure 6: CityJSON file structure
[44]

25

Kolbe et al. has presented the method for storing and accessing 3D City
Models using CityGML, especially in SDIs. Utilization of CityGML model con-
cepts has been done and the research express that, CityGML provides substan-
tial information. [48] Geo-referenced models look promising when it comes to
creating augmented reality applications as well as mixed reality applications.
Praschl et al. have created occlusion models for mixed-reality applications us-
ing Microsoft HoloLens. Their study indicated that geometry file formats such
as OBJ or COLLADA are used commonly but they lack semantic information.
Their implementation also showed that the CityJSON format for exchanging
spatial information looks promising. [49]

Last but not least, visualization for OGC standardized data looks promising
when it comes to web-based visualization. Mohad Hanafi et al. has expanded
3D object depiction by implementing CityJSON-based encoding. The main
focus was showing 3D spatial data, especially building and parcel using a web
platform and their enhancement revealed that visualization with CityJSON has
succeeded with display, query, and update attributes. [50]

3.1.1 Software and Libraries

A variety of tools and software have been utilized to analyze, visualize, compare,
convert, manipulate, and validate the CityGML and CityJSON formats. In this
section, an overview of both open-source and commercial software as well as
libraries are given.

• citygml4j is an open-source Java library and API for OGC CityGML. It
was created with the intention to make CityGML processes like parsing,
editing, and writing easier. It supports CityGML 3.0 Conceptual model
and CityGML AEDs [https://github.com/citygml4j/citygml4j]

• citygml-tools is a command line tool that bundles several operations for
processing CityGML files which include statistics, validation, filtering lods,
upgrading, and conversion [https://github.com/citygml4j/citygml-tools]

• cjval is a library to validate CityJSON objects. It’s supporting the valida-
tion of CityJSON and CityJSON features. [https://github.com/cityjson/cjval]

• ninja is a web viewer for CityJSON files. It supports CityJSON file
specifications. [https://github.com/cityjson/ninja]

• azul is a 3D city model viewer that was developed specifically for ap-
ple silicon macs. The intention behind this app is to view CityGML
files from version 1.0 to 2.0 and CityJSON 1.0 to 1.1. Also, it supports
viewing OBJ, OFF, IndoorGML, and POLY files. It supports loading
multiple files, selecting objects by clicking them or selecting them in the
sidebar, toggling the visibility of individual items, and browsing their at-
tributes.[https://github.com/tudelft3d/azul]

26

• cityjson-qgis-plugin is a Python plugin for QGIS 3 which adds support
for loading CityJSON datasets in QGIS. [https://github.com/cityjson/cityjson-
qgis-plugin]

• cjio is a Python command line interface program. It supports CityJSON
operations like manipulation, translation of coordinates, removing attri-
butions, texture processes etc. [https://github.com/cityjson/cjio]

• FME Workbench is a software tool that has been used to manipu-
late and transform geospatial data. Its ability to integrate with dif-
ferent data sources, comprehensive features, and user-friendly interface
make it a valuable tool for managing and transforming geospatial data.
[https://www.safe.com/fme/fme-desktop/]

• QGIS is a free and open-source geographical information system to deal
with geospatial data. It can create, edit, visualize, analyze, and publish
geospatial information on all platforms. [https://qgis.org/en/site/]

• Cesium JS is an open-source JavaScript library for creating 3D globes
and maps with the best possible performance, precision, visual quality, and
ease of use. It supports CityGML processes. [https://cesium.com/platform/cesiumjs/]

3.2 Android Development
Android is a free, open-source operation system specially developed for mobile
devices. [51] The Android Operating system introduced in 2007 by Google joined
forces with the mobile industry to form the Open Handset Alliance (OHA).
Their mission was to establish Android as an open-source OS. This means any-
body could access the sources and have a chance to modify the operating system
to fit requirements. [52]

There are three different languages that support the development of Android
applications. Kotlin, Java, and C++ languages. Android SDK compiles code
along with any data into an APK or an Android App Bundle.

An Android package, which is an archive file with an .apk suffix, contains
the contents of an Android app that are required at run time and it is the file
that Android-powered devices use to install the app.

An Android App Bundle, which is an archive file with an .aab suffix, contains
the contents of an Android app project including some additional metadata that
is not required at run time. An AAB is a publishing format and is not installable
on Android devices, it defers APK generation and signing to a later stage. [51]

3.2.1 Kotlin

Kotlin is an open-source programming language developed by JetBrains. In
late 2017 Google announced that they will conduct Android development with
Kotlin officially. In Google I/O 2019, the Google Android development team
has also announced that developments will be increasingly Kotlin-first. [53]

27

Figure 7: Android Studio layout editor interface.

There are four main reasons to select Kotlin over Java. Kotlin is expressive
and concise, it brings safer code which means apps developed with Kotlin are
less likely to crash. Interoperability is another rich feature of Kotlin. It is
100% consistent with the Java programming language. It has also structured
concurrency which brings background task management easy with the help of
coroutines. [53]

3.2.2 Android Studio

Android Studio is the official IDE for Android Development. The main purpose
behind Android Studio is to accelerate developer efficiency and help developers
build high-quality apps. It’s based on IntelliJ IDEA by JetBrains.

Android Studio offers many features popular in other IDEs such as pushing
code and resource changes promptly while having a running app, intelligent
code editor for syntax highlighting functionality, and code completion. It also
has an excellent Emulator which powers when running an app and provides a
faster way of deployment instead of real device testing. The simulation could
be done not only for smartphones but also for other device types such as smart
watches, android autos, and tablets.

As shown in Figure 7, Android Studio has a powerful tool called layout
editor. Visual elements of any Android application as well as their relation to
other elements could be created by the layout editor. It gives the ability to see
developed applications before compiling them. [54]

28

3.2.3 Android Components

There are four main components in Android Development. Activities, Services,
Broadcast Receivers, and Content Providers. Activities are the main entry
point that gives the user the ability to interact with the app. It represents a
single screen with a user interface. Services, created for the purpose of back-
ground and long-running operations while the app is working. Broadcast Re-
ceivers aims to deliver events to the app while outside of the activity lifecycle.
It could be exampled like getting an SMS for verification, getting notification,
etc. Last but not least, content providers, as understandable from its name,
manage communication between apps. Through the content provider, other
apps can query or modify data if the content provider allows it. For instance,
the Android system provides a content provider that manages the user’s con-
tact information. As such, any app with the proper permissions can query the
content provider [51]

3.3 Android App
In this section, brief information regarding a simple android app will be ex-
plained according to its components. As explained in the section on Android
Studio, when developing an Android app, Android Studio should be used as
per recommendations by Google. In order to create a new Android app, the
following steps are required. A template should be selected as soon as creating
a new project. This will bring a screen to give the main properties of the app.
They can be explained in the following list;

• Name: The app name will be visible on the phones.

• Package name: The unique identifier for an Android application. It is
used to identify the app’s code files, resources, and assets.

• Minimum SDK: The minimum level of Android API (Application Pro-
gramming Interface) that the app requires to run. It specifies the lowest
version of Android on which the app can be installed and run without
any issues. When selecting the minimum SDK, Android Studio informs
its users to select the best version by providing up-to-date ranges.

After that information has been entered, the empty app is opening with the
desired template. The minimal app contains two different components called,
app and gradle. In order to view those files in advance, project view should be
used as shown in 8.

when opening the project view, a lot more files and directories will be visible
to the developer, those files and directories include the following files;

• build: Contains build output for the app.

• libs: Holds private libraries that are added to extend the functionality of
the app.

29

Figure 8: Android app project files
[55]

30

• src: Contains all code and resource files in the project.

• androidTest: Contains instrument test codes on that run on Android
devices or emulators.

• cpp: Native C and C++ code place that is used to develop native Android
applications which are low-level android apps that target physical device
components, such as sensors and touch inputs.

• main: A place for the sources of Android apps that are shared by all build
variants.

• AndroidManifest.xml: Every app must have that file as the root of
the project structure. This file describes essential information about an
Android app’s build tools, the operating system, and Google Play. The
manifest file is handling the following points: The components of the
app, which include all activities, services, broadcast receivers, and content
providers. The permissions that the app needs in order to access protected
parts of the systems. The hardware and software features that the app
requires, such as a camera, and open gl. etc.

• java: All java and kotlin classes are staying in this direction.

• res: Application resources, such as drawable files, layout files, and UI
string files are the content of this inventory.

• assets: Contains files to be compiled into an APK file as-is. The best
location for textures.

• test: Contains local test codes.

• build.gradle (app): This file specifies build configurations for app-level
purposes.

• build.gradle (project): A project-level build configuration when the
app is containing more than one module. The configuration here applies
to all modules

3.4 ARCore
ARCore is a powerful tool for building augmented reality (AR) apps. It has
three key capabilities to interactive virtual content with the real world:

• Motion tracking: The phone understands and tracks the user’s po-
sition. To understand how the motion tracking world, ARCore uses a
process called simultaneous localization and mapping (SLAM) which is
ARCore uses the captured photos as feature points and uses these points
to compute changes in location.

31

• Environmental understanding: Allows phone to detect location; hor-
izontal, vertical, and angled surfaces. This feature is achieved by feature
points that appear to lie on surfaces. For example, tables, and walls.

• Light estimation: As understandable from its name, allows apps to
estimate the environment’s light conditions. [56]

Apart from these three main components, ARCore is providing other fea-
tures. Firstly, in hit testing, ARCore can take an (x,y) coordinate from the
phone’s screen and project a ray into the camera’s view of the world. This
returns any geometric planes or feature points that the ray intersects, along
with the pose of that intersection in world space. This allows users to select
or interact with objects in the environment. Secondly, oriented points let to
place virtual objects on angled surfaces. When the user performs a hit test that
returns a feature point, ARCore looks at nearby feature points and uses those
to estimate the angle of the surface at the given feature point. ARCore then
returns a pose that takes that angle into account. It’s important to note that
surfaces without texture, such as a white wall, may not be detected properly,
as ARCore uses clusters of feature points to detect the surface’s angle.

Moreover, poses can change as ARCore improves its understanding of its
own position and its environment. To place a virtual object, the user needs to
define an anchor to ensure that ARCore tracks the object’s position over time.
Often, the user creates an anchor based on the pose returned by a hit test.

Because poses can change, ARCore may update the position of environmen-
tal objects like geometric planes and feature points over time. Planes and points
are a special type of object called trackables. These are objects that ARCore
tracks over time. Anchoring has given the ability to place virtual objects to spe-
cific trackables to ensure that the relationship between the virtual object and
the trackable remains stable even as the device moves around. This means that
if placing a virtual object in an Android figurine on the desk if ARCore later
adjusts the pose of the geometric plane associated with the desk, the Android
figurine will still appear to stay on top of the table.

Augmented Images is a feature that allows building AR apps that can re-
spond to specific 2D images, such as product packaging or movie posters. Users
can trigger AR experiences when they point their phone’s camera at specific
images. For example, they could point their phone’s camera at a movie poster
and have a character pop out and enact a scene.

ARCore also tracks moving images, such as a billboard on the side of a
moving bus. Images can be compiled offline to create an image database, or
individual images can be added in real-time from the device. Once registered,
ARCore will detect these images, and the images’ boundaries, and return a
corresponding pose.

Overall, ARCore is an exciting technology that can help bring AR app ideas
to life. With hit testing, oriented points, and trackables, it’s promising to cre-
ate immersive AR experiences that respond to user’s interactions with the real
world. [56]

32

3.4.1 Coordinate Systems in AR

Coordinate systems in AR is also crucial subject as combining real world object
with virtual object is more challenging question when considering AR appli-
cations. AR apps typically use three different coordinate systems: the World
Coordinate System, the Camera Coordinate System, and the Screen Coordinate
System. The World Coordinate System is a fixed coordinate system that defines
the real-world location and orientation of the device. The Camera Coordinate
System is a coordinate system that is relative to the device’s camera. It moves
and rotates with the camera, and its origin is usually at the camera’s optical
center. The Screen Coordinate System is a 2D coordinate system that corre-
sponds to the device’s screen. It is used for user interface elements, such as
buttons and menus.

In order to properly align virtual objects with the real world, AR apps need
to know the transformation matrix that maps points from the world coordinate
system to the camera coordinate. This transformation can be obtained using
various techniques, such as GPS, inertial sensors, and computer vision. Once
this transformation is known, virtual objects can be positioned and oriented
correctly in the camera’s view, using the camera coordinate system as shown in
Figure 9

Figure 9: AR Coordinate Systems.
[57]

3.4.2 Geospatial API

The ARCore Geospatial API gives the ability to the user for attaching any
content remotely to any area covered by Google Street View. It brings to provide
AR experience on a global scale. Geospatial API uses device sensors and GPS
data to detect the environment, then it’s matching detected part of the real
world. The outcome of this usage is to create a virtual positioning system to
place any object remotely within the AR environment as shown in Figure 10.

Global localization with VPS: Street View images from Google Maps
were used for global localization to provide geospatial poses which have been
captured for more than 15 years. Those images are the fundamental points of

33

the virtual positioning system. The parts of images are combined across tens of
billions of them where they have been identified by deep neural networks. After
identification, they are combined to compute a 3D point cloud of the global
environment. The environment consists of trillions of points and covers nearly
all countries. [58]

In the Geospatial API, a neural network is utilized to process pixels received
from the user’s device, in order to identify recognizable features in the environ-
ment. These features are then matched to the VPS localization model, which is
used by computer vision algorithms to determine the precise position and orien-
tation of the device. This approach enables the system to provide location data
that is significantly more accurate than traditional GPS-based methods. [58]

Placing anchors: In contrast to other ARCore APIs like the ARCore Cloud
Anchor API, which require explicit mapping of a space to determine a device’s
pose, the Geospatial API uses image maps to accurately position anchors with-
out the need for manual mapping. These image maps are global and adhere
to the WGS84 specification, providing horizontal (latitude and longitude) and
vertical (altitude) position information for anchors. With the Geospatial API,
anchors can be easily placed at a specific location on the globe, without requiring
manual mapping of the environment. [59]

Terrain anchors:The Terrain anchor, which is a variant of the Geospa-
tial anchor, enables the placement of AR objects solely based on latitude and
longitude coordinates while leveraging data from Google Maps to accurately
determine the altitude above ground level. [58]

Figure 10: ARCore Geospatial API principles.
[44]

In the context of developing a mobile AR app by considering geospatial capa-
bilities, the user’s location is also related to an absolute global frame of reference,

34

typically through the location information provided by GPS coordinates. There
are 4 pillars that need to be considered when developing geospatial-oriented AR
applications.

• Camera: In the field of Augmented Reality, the world, and its surround-
ings can be understood by users through the use of a camera feed. The
camera feed is utilized as a backdrop to integrate augmentations into the
user’s surroundings. The analysis of the camera feed in real-time is done
to identify anchoring patterns or precisely locate features. This enables
the user to feel as though the augmentations are a part of their actual
surroundings.

• GPS: Coordinates are the most accurate information when retrieving the
device’s location. It will work more efficiently outdoors. Using GPS re-
quires significant power consumption. The ideal usage for geospatial AR
applications should have to provide coordinates. In addition to latitude
and longitude, the GPS can also provide altitude information. The lo-
cation provided to AR is the WGS84 coordinate system. The provided
altitude is above the reference ellipsoid, not mean sea level.

• Motion Sensors: The motion sensors are useful for monitoring device
movement, such as tilt, shake, rotation, or swing. The magnetometer,
gyroscope, accelerometer, barometer, 3D orientation, and 3D position are
components of motion sensors. To explain those sensors, firstly; Magne-
tometer is sensing the Earth’s magnetic field to establish the direction of
the magnetic north, like a classic compass. The magnetometer, together
with the gyroscope and accelerometer, allows the establishment of the 3D
orientation of the device. The gyroscope sensor reports angular veloc-
ity. The accelerometer is sensing linear acceleration as the device is
moved. The barometer is observing atmospheric pressure can be useful
to establish much more altitude, based on a reference sea level pressure.

• Size, weight, and power usage: Using location updates, sensors, and
camera capabilities is power-consuming. Turning off those features when
not using them is crucial to improve working duration. Apart from that,
rendering images will require Graphical Processing Unit to show a large
number of items and/or 3D geometry. All considerations make augmented
reality applications rather power consuming, as well as heat and the size
of a device can be related to both its ability to dissipate this heat and the
capacity of its battery.

35

4 Methodology
The chapter will be elaborate on components of methodology to explain the
requirements when developing Android apps and when developing those kinds
of applications which data formats are required, and how the development en-
vironment selected.

4.1 Requirements
The goal of this thesis is to integrate CityGML-based building data into an AR
environment on a street view level. To achieve this, an Android app will be
developed that utilizes OBJ data that has been converted from CityGML or
CityJSON using Google’s ARCore SDK. The app will leverage the Geospatial
API to accurately place the OBJ files in their actual location using latitude,
longitude, and altitude information.

The methodology involves several steps. Firstly, the CityGML or CityJSON
data will be processed and converted into OBJ files. Next, the ARCore SDK
will be used to develop an Android app with augmented reality capabilities. The
app will utilize the Geospatial API to accurately place the OBJ files at their
actual location. To evaluate the effectiveness of the solution, user testing will
be conducted to assess the app’s ability to accurately integrate CityGML-based
building data into an AR environment on a street view level.This approach
provides a new way to visualize building data on a street view level using AR
technology. It has the potential to benefit urban planners, architects, and city
officials by providing a more intuitive way to understand building data and its
impact on the surrounding environment.

The selection of appropriate hardware is crucial for the successful imple-
mentation of an augmented reality (AR) system. With the rise of affordable yet
powerful smartphones, many AR applications have been designed around them.
Modern smartphones come equipped with internal sensors, high-resolution cam-
eras, and displays, making them ideal for the development of a complete mobile
AR system. Among the most popular mobile operating systems, Apple’s iOS
and Google’s Android are currently the most widely used. Choosing either of
these OS for an AR system offers the advantage of a large user base. With

approximately 70% of all mobile devices running on Android, it is particularly
attractive for AR development, since it is based on the platform-independent
programming language Java and Kotlin, allowing for easy source code reuse.
However, the vast number of different Android smartphones on the market can
make hardware selection challenging. [60] When selecting a smartphone for an
AR system, hardware specifications play a critical role. Modern smartphones
come equipped with displays that have at least Full-HD resolutions, which are
sufficient for AR systems, taking into account the screen size and viewing dis-
tance. In addition, the sensors within the device, such as accelerometers, mag-
netometers, and gyroscopes, are essential for determining the orientation of the
physical device. [47]

The camera is another critical component used for capturing images of the
physical world for display on the screen and for internal use in pose estima-
tion. Therefore, high-quality images are necessary, and multiple factors, such
as the amount of megapixels, sensor size, and pixel size, are important for im-
age quality. In smartphones, sensor sizes are described as fractional numbers
in inches, indicating the type of sensor, and their size is measured along their
diagonal. Pixel sizes are measured in micrometers and typically range from
1 to 2 micrometers in modern smartphones. However, increasing the amount
of megapixels usually requires a larger sensor, which can limit the size of the
device. Furthermore, smaller pixels capture less light, which can affect camera
performance in darker conditions. A camera with larger pixels performs better
in darker conditions than one with smaller ones. [61]

For this thesis, Xiaomi Redmi Note 8 Pro chosen as smartphones for the
development of the AR app, listed in Table 2

Xiaomi Redmi Note 8 Pro
Category Value
Display Res-
olution

1080 x 2340
pixels

CPU / GPU Octa-core
2x2.05 GHz
Cortex-A76

Storage /
RAM

128GB /
6GB

Camera 64 MP,
f/1.9, 26mm
(wide),
1/1.72",
0.8µm,
PDAF

OS Android 11

Table 2: Xiaomi Redmi Note 8 Pro Specifications

When developing an Android application, the choice of the development

37

environment is an important factor in determining the overall success of the
project. While there are several options available in the market like Visual
Studio Code, Eclipse, and even IntelliJ Idea, Android Studio has emerged as a
popular choice for Android developers due to its versatility, ease of use, and rich
set of features. One of the main advantages of Android Studio is its integration
with Google’s official Android SDK, which provides a comprehensive set of tools
and libraries for building high-quality applications. This integration makes it
easier for developers to create applications that adhere to best practices and
follow the latest Android design guidelines.

Android Studio also offers a powerful code editor with advanced code comple-
tion, highlighting, and analysis features, making it easier for android developers
to write efficient and maintainable code. The built-in layout editor provides
a satisfying interface for creating layouts, which can then be customized us-
ing code if necessary. Another key advantage of Android Studio is its support
for version control systems like Git, which allows developers to manage their
codebase and collaborate with team members more effectively. The integrated
debugging tools also make it easier to track down and fix errors during devel-
opment, reducing the time required for testing and bug fixing.

When compared to other development environments like Eclipse, Android
Studio is often seen as a more modern and compelling option, with better per-
formance and a more intuitive user interface. This is reflected in its popularity
among developers, with many choosing to use Android Studio for their Android
development needs. Due to the listed requirements and powerfulness, Android
Studio was selected as the main development environment. [62]

In order to show 3D building data in a street-level AR environment. There
must be an AR library to catch this functionality. Since the Android platform
was selected as a development platform, the best AR library would be ARCore
from Google. [63]

In order to use ARCore in Android applications, the app should target An-
droid phones running Android 7.0 (Nougat) and later. [64]. Although ARCore
is supporting a broad range of AR applications, the integration of CityGML-
based building data into an AR environment requires a high level of localization
that ARCore primarily not supports. Following the explained reasons in the
background section, the ARCore Geospatial API was selected.

4.2 App Structure
The purpose of this section is to provide an overview of the architecture and
technologies used in the development of the Android app, which aims to in-
tegrate CityGML-based building data into an AR environment at the street
view level. The app was developed using the Model-View-ViewModel (MVVM)
architecture, which separates the app’s data, user interface, and logic. This
design pattern is helpful for building scalable and maintainable apps that are
easy to test and update. The app’s data is stored in an OBJ file format, which
is converted from CityGML and CityJSON using the FME Quick Translation
program. This format is ideal for the app’s use case, as it is lightweight and

38

easy to work with in an AR environment. The app also uses Google Maps for
mapping purposes, which provides users with an accurate representation of their
surroundings. The app’s user interface is built using Activities and Fragments.
Activities are the app’s main entry points, representing the various screens that
users interact with. Fragments are reusable components that can be combined
with other Fragments to create complex user interfaces. The app’s interface is
designed to be simple and intuitive, allowing users to easily navigate and interact
with the app’s features. The ViewModel is responsible for managing the app’s
data and logic. It provides a clean interface between the Model and View and
ensures that the app’s data is presented in a consistent and easy-to-understand
way. The ViewModel also uses the ARCore SDK for the app’s AR capabilities,
which allows users to see 3D building data in a real-world environment. The
ARCore Geospatial API is used for geospatial processes, such as posing the 3D
building data in the AR environment. The app was developed with a minimum
SDK version of 24, which is required for the use of the ARCore SDK. This en-
sures that the app is compatible with a wide range of devices and can provide
users with an immersive AR experience as shown in the figure

Figure 11: Concept image of desired application
[44]

The implemented AR system can be split into three core components, the
augmented world, map view, and physical world, which also define the three
pillars of AR in general. To realize the building data in general, there is a need
for AR View. This view will act as the main point of interaction in the app as
shown in Figure 12 It will basically rely on the permission of users because of
the requirements that AR systems require that are described in the Background
section.

39

Figure 12: AR app workflow.

40

4.3 Study Area & Data
The testing with ARCore Geospatial API requires testing outside since it’s using
global localization with VPS. This term could be understood that Street View
images from Google maps are being captured for more than 15 years. That’s
why those images foundation of VPS. Deep neural networks interpret those
images and compute the 3D point cloud of the global environment. Since testing
outside gives precise results. The study area was selected as the main building
of Technische Universitat Berlin which is located at Straße des 17. Juni 135,
10623 Berlin as shown in Figure 13.

Figure 13: TU Berlin main building map
[44]

The data has been taken from the Berlin 3D - Download Portal which pro-
vides open data since 2009. The platform gives the ability to download both the
mesh model and the building-oriented LoD2 model. The differences between the
mesh model and the building-oriented model could be found in the table. [65]
For mobile application development processes, the CityGML LoD2 model has
been downloaded and processed.

4.3.1 Data Conversion

OBJ is a common 3D format that has wide software support in 3D modelling and
3D visualisation software. However, OBJ lacks the semantics that is provided in
CityGML and CityJSON. In that sense, conversion to an OBJ file is beneficial
to take advantage of the wide range of 3D software. [46]

CityGML, CityJSON, and OBJ formats are the main components of the
developed app which will be data for visualization of 3D buildings integrated

41

3D mesh model Building-oriented LoD2 model
Validity Based on a photo flight from Au-

gust 2020
Initial version 2007-2009, last
updated in 2014 based on a
photo flight from summer 2013

Characteristics Textured, comprehensive 3D
mesh model without building
information

More than 560,000 textured indi-
vidual buildings based on ALKIS
floor plans with roof structures
(LoD2 model)

Original file for-
mat

OBJ and skins (tiled) CityGML and skins

Download Tile by tile as OBJ per inter-
active selection in the download
portal

By district as CityGML (as a
ZIP archive) or per interactive
selection in the download portal
in various formats

Table 3: Differences between 3D mesh model and LoD2 Model

into an AR environment on a street view level. In order to use those data,
CityGML data has been converted to CityJSON and OBJ format. Both formats
will be observed according to their reliability and performance.

In order to convert those data to a more AR-understandable format a con-
version tool called FME | Data Integration Platform will be used. This platform
enables conversion from CityGML and CityJSON to OBJ with the FME Quick
Translator tool. [66]

When working with the conversion of data between the OBJ and CityGML
formats, there are several challenges that need to be considered.

1. OBJ datasets typically consist of sets of polygons or triangles, while
CityGML geometry is based on the types defined in the Geometry Markup
Language (GML). This means that CityGML supports more advanced
concepts, such as polygons with holes and solids, which are not present
in OBJ. As a result, a single surface in CityGML may be represented by
multiple faces (triangles) in OBJ. [46]

2. CityGML supports thematically differentiated objects and surfaces, which
is not the case with OBJ. In OBJ, there is no standard way to differentiate
objects or surfaces based on attributes. In contrast, CityGML provides
a way to differentiate objects and surfaces based on their thematic at-
tributes, making it more suitable for complex urban models. [46]

3. OBJ has limited support for attributes, whereas CityGML allows sev-
eral attributes to be assigned to objects or their parts. This means
that CityGML can provide more detailed information about objects and
their attributes, such as material properties, thermal behavior, and en-
ergy performance, which are critical for simulating urban environments
accurately. [46]

42

5 Implementation
The realized mobile app development implementation derived from the require-
ments as the thesis outcome is described in detail in the following. First, the
mobile app architecture will be shown and explained shortly. Other parts of the
solution are then described in more detail.

5.1 Design
The first phase of mobile application development is design as its first place the
user gets an impression. While designing the mobile application, user experi-
ence was taken into account and the design was made by the material design
principles determined by Google. [67] According to these principles, the areas
accessible to the user in mobile application usage decrease as you go upwards.
For this reason, the main functions of the application will be summarized below
a design has been made in such a way as shown in Figure 14 [68]

As requirements summarize the needs for the intended app, the app has 4
screens in advance; Splash screen, map screen, add file screen, and AR screen.
For those ideas in mind, a proof of concept design as shown in Figure 15 made by
Figma which is a tool for designers and developers to visualize their ideas. [69]

5.2 General App Architecture
General recommended app architecture can be explained using Model, View,
and ViewModel. [5] To explain those components deeper model holds data,
and ViewModel observes those data to expose to the View. As explained in
the methodology section, the general architecture will be as follows. Android
Jetpack libraries will be used for handling interaction processes. Google Maps
SDK will also be used for mapping purposes and ARCore Geospatial API will
be used for AR interactions.

To explain project architecture deeply, the whole app is divided into four
different packages which mean the app is maintained as a package by features
as shown in Figure 16. To explain those app structure elements independently;
ar section is a package for whole classes in order to catch AR functionality.

Figure 14: App UX design approach.

helpers package is for the ARCore library which is including core Java classes
that are maintained by Google. map package is for the map screen as the
main screen of the app. renderer package is also for ARCore’s object renderer
coming from the library. Apart from those points, the app has a manifest
section about maintaining activity properties such as theming, permission, etc.
assets for storing 3D objects. res folder for the resource purposes such as
storing dimensions, layouts, strings, etc. The Gradle scripts are also for the
configuration of the project.

5.3 Development of the app
The general development structure is shown in Figure 17. As explained in
the requirements section the development structures have 3 different phases,
selection of libraries, preparing views, and adding business logic to the app.
The planned approach for the development of the app will be converting data
from CityGML to OBJ format and showing them using the loader class.

5.3.1 Dependencies & Libraries

The dependencies and libraries are the main components of the app when con-
sidering development. The following dependencies have been used to develop

44

Figure 15: Proof of concept design with Figma

desired Android application. Some of those libraries are coming in a default
way which are Android core, AppComppat, Material, ConstraintLayout, Junit,
and Espresso. All libraries used in the app are explained below;

• Android Core: Provides a set of Kotlin extensions for core Android
framework APIs.

• Android AppCompat: Ads support for the Action Bar user interface
design pattern.

• ConstraintLayout: Allows to create large and complex layouts with a
flat view hierarchy.

• Android Core Splash Screen: Provides a simple way to show a splash
screen on app startup.

• Android Activity KTX: Set of Kotlin extensions for the Android Ac-
tivity class.

• Android Fragment KTX: Set of Kotlin extensions for the Android
Fragment class.

• Android Navigation Components: Support for fragment navigation.

45

Figure 16: General app structure

• Android Navigation UI: A library supports for the Navigation compo-
nent, including support for the app bar, navigation drawer, and bottom
navigation.

• Google Play Services Auth: Google Sign-In and authorization which
used to communicate Google Cloud.

• Google Play Services Location: Bring location-based services, includ-
ing geofencing and activity recognition to the Android Apps.

• Google Play Services Maps: In order to use Google Maps API, this
library should be added.

• Lifecycle Common Java 8: Lifecycle aware components.

• Concurrent Futures: Small library to support concurrent programming
in Java when rendering objects.

• Google Filament Android: A real-time physically-based rendering en-
gine.

• Google AR Core: Augmented Reality development for native android
apps.

• Google Material: Material Design components and guidelines.

• Google Guava: Provides a set of core libraries for Java programming.

• OBJ: Support for loading OBJ models.

46

Figure 17: General development structure components

• JUnit: Testing framework for Java programming.

• Android Test Ext JUnit: Support for JUnit testing on Android devices.

• Espresso Core: Provides a set of testing APIs for UI testing on Android.

5.3.2 Splash Screen

The first implementation screen is to create a splash screen. The main purpose
of the splash screen is to show the user a screen while the app is being prepared.
For the intended application, a splash screen API has been used that fits every
version of the Android phones. [70] Due to splash screen created using Google’s
library provided previous section it’s maintained by manifest file. No separate
file class is not generated for the splash screen purposes.

5.3.3 Map Screen

In order to develop the map screen feature a MapFragment created under map
package. User needs to be directed to the MapView as soon as app is open.
The app’s navigation flow handled by MainActivity which is the main point
for the screen. To direct the user to the MapView, a navigation XML created
that includes MapFragment as a destination. Fragment is the component of
Android Development provides flexibility to create responsive screens on top of
activites. Their functionality depends on Activity Lifecycle as well as having
separate lifecycle. From implementation of AR app, two main method overrided

47

to use Fragments. OnCreateView is called to have the fragment instantiate
its user interface view and OnViewCreated is being called immediately after
onCreateView has returned, but before any saved state has been restored in to
the view. [71]. To provide mapping functionality in the MapView Google Maps
Android SDK was used. Apart from that the map screen has different use
cases;

• Main View: The main map view is opening with a marker showing TU
Berlin as a marker and has a fresh map initiated. The user has a chance
to pan, zoom and pinch in the map view. This View has been achieved
by listening the OnMapReadyCallBack from Google Maps library. If map
is ready, then it means we can do processes to make data manipulation
Google Maps. In that case, as soon as user opens the app, map loads
and then marker is loading in order to be show desired point with marker
added.

• Add file: This button allows the user to add CityGML and CityJSON
to the app whenever selecting it from the file system. In order to work
with this functionality, the user must have to give consent to the app for
giving permission to read their external storage. Otherwise, working with
the files is not possible. The reading files is achieved by parsing XML or
JSON parsers.

private fun openFi l e () {
va l i n t en t = Intent (In tent .ACTION_OPEN_DOCUMENT) . apply {

addCategory (Intent .CATEGORY_OPENABLE)
type = " app l i c a t i o n /gml"

}

s t a r tAc t i v i t yFo rRe su l t (intent , p i ckPd fF i l e)
}

• Go to the location: This allows the phone to show the user’s location
on the map by clicking the button. The location-showing process also
requires permission from the user. Starting from Android version 6.0,
runtime permission should have to be requested. [72] In the developed
app, runtime permissions are also requested as soon as the user clicks the
app. User should give the permission for location purposes. If user grants
desired location permision, a marker could be added by following code
pieces. The code piece is working by tapping My Location button in the
app.

showMyLocationButton . s e tOnCl i ckL i s t ene r {
i f (! Locat ionPermiss ionHelper . hasFineLocat ionPermiss ion (r e qu i r eAc t i v i t y ())) {

Locat ionPermiss ionHelper . r eques tF ineLocat ionPermis s ion (r e qu i r eAc t i v i t y ())
} else {

//go to user l o c a t i o n

48

mainMap? . isMyLocationEnabled = true
mainMap? . u i S e t t i n g s ? . isMyLocationButtonEnabled = fa l se
getLastLocat ion ()

}
}

• Go to AR View: This feature allows the user to open AR View by
controlling whether the user has AR supported-device or not. If the user
doesn’t have an AR-supported phone the AR View functionality is not
directing the user to that view. Since the AR View is maintained by an
Activity. Navigation done with Intent class of Android which is being used
for launcing Acitivies mainly.

5.3.4 Add File Screen

The main idea to create this screen is to add CityGML/CityJSON data from
the phone’s file system, then convert this data to an OBJ file to show in the
AR environment. The selected CityGML/CityJSON file also be shown on the
map as a point marker to show users which location they are dealing with. Due
to lack of conversion from CityGML and CityJSON to OBJ file, more software
oriented way used to achieve this functionality. On the other hand, parsers
created for parsing CityGML and CityJSON. When creating parsers, following
considerations have been taken into account.

The first step in the parsing process is to read in the CityGML or CityJSON
data using a parser library. There are several parser libraries available for both
CityGML and CityJSON formats, such as CityGML4j, GeoTools, and Jackson.
The parser libraries will generate a data structure that represents the parsed
CityGML or CityJSON data. Once the CityGML or CityJSON data is parsed,
the next step is to convert it to 3D geometry data. This involves extracting the
relevant information from the parsed data, such as building footprints, heights,
and textures. The geometry data can then be stored in an appropriate format,
such as OBJ file.

5.3.5 AR View Screen

The most functional screen of the app is called AR View which aims to interact
users in real world. To explain this screen in detail; when the user opens the
AR view, the user has been warned of privacy concerns and camera permission
is requested from the user in order to interact with the real world using the rear
camera. If the user grants the permission then the accurate location permission
is being requested by the app because ARCore Geospatial API works just with
accurate location information [59]. As soon as all required permissions are given
by the user, then localization phase begins which is using the location of the
phone to understand at which point the user stand.

Additionally, if all localization processes went well, virtual positioning takes
part in the application posing. In order phone to create VPS, the phone must

49

be located in nearby objects, such as buildings, stores, etc. ARCore Geospatial
API is using Google StreetView images and estimates the user’s location with
neural network algorithms. [58]

Last but not least, after determining the user’s location and device geospatial
pose, objects could be placed by touching the screen. The app also has two
different functionalities one setting geospatial anchors and the other one setting
terrain anchors. After setting those anchors in the AR world using VPS, the
object is anchored in its position spatially. [73]

In order to achieve previously explained steps, in the implementation side
ar, helpers and renderer packages used.

ar package has GeospatialAcitity to responsible for main AR View. Pri-
vacyNoticeDialog fragment to give user information about privacy concerns.
VpsAvailabilityNoticeDialogFragment is to give user availability of VPS. Those
privacy and VPS dialogs are provided from Google. [74]

helpers package includes classes coming from the ARCore SDK to use func-
tionality of Augmented Reality such as a session lifecycle helper which manages
an ARCore Session using the Android Lifecycle API. Before starting a Session,
the class requests installation of Google Play Services for AR if it’s not installed
or not up to date and asks the user for required permissions if necessary. Cam-
era permission helper to ask camera permissions. Depth settings to manage the
occlusion option setting and shared preferences. Display router helper to track
the display rotations. Full screen helper to set up the Android full screen mode.
Instant placement settings to get functionality of instant placement. Location
permission helper to ask for user’s location. Map Touch Wrapper to get finer
granularity when tapping on GoogleMap views by interpreting touch events.
Snackbar helper to give user information as soon as their processes finished
or dismissied. State helper to give user meaningful information about outside
regarding the VPS and GPS state.

renderer packages includes classes for rendering purposes. Background ren-
derer for AR Camera background, plane renderer, specular cubemap filter which
filters a provided cubemap. Framebuffer associated class with texture. GLError
for handling OpenGL errors. Mesh which is a class for collection of vertices,
faces, and other attributes that define how to render a 3D object. Shader and
Texture classes for showing 3D object in an AR world.

50

6 Results
As depicted in Figure 12, an Android app, having CityGML-based building data
integrated into an AR environment on a street view level has been developed.
The tests have been made with Xiaomi Redmi Note 8 Pro device. However,
ARCore supports only 3D object formats such as.OBJ, .fbx,.psd. The develop-
ment showed that direct usage of CityGML or CityJSON is not possible due to
the capabilities of the Google ARCore library. [75]

Figure 18: 3D AR app using ARCore Geospatial API.

Additionally, the OBJ file converted from the CityGML file has also been
shown at the street view level but the challenge of showing this 3D object at
a street-view level requires advanced techniques of posing which is related to
visual programming such as shader language.

The intended use cases for runtime permissions have already been achieved as
users are warned about privacy, their file system permission, camera permission
as well as their location permission. If the user didn’t grant these permissions,
the app won’t work.

The conversion from CityJSON data experimented with FME desktop ap-
plication but the process turned out to be useless because converting from
CityGML to OBJ seems to give the expected results as shown in Figure 19.
To explain this figure, the small building is far away from the user’s position
that’s the reason it’s rendered as a small object. When moving towards to this
building object in the AR environment, it’s getting bigger but as stated before,
it lacks its real positioning.

Testing of the app is also challenging, as it was required to test outside
because Google ARCore Geospatial library is depending on Google Street View
images, that’s why a full test could be possible just by going outside. [58]

Figure 19: Integrated 3D building data into AR

52

7 Conclusion and Future Work
The development of the app shows that mobile devices, such as smartphones,
are sufficient to realize a performant mobile AR app for showing building infor-
mation with CityGML data. Also, the development process shows that posing
the building to its location accurately requires a high level of algorithms, for
instance, a quaternion-based visualization. [18]

For future work, the app could be extended features below;

• Instead of a vector map that the app is supporting to show map infor-
mation to the user, a satellite imagery map could be added to show users
detailed information about their location.

• A more automated way of data conversion could be done on both the
client and server sides. On the client side, the conversion from CityGML
to OBJ could be achieved.

• A more lightweight data format, such as CityJSON could be used as a
source of conversion data which will give developers to implement features
easily as CityJSON is more lightweight than CityGML. [76]

• Server driven approach could be added to a recent application which is
to hold data in the server and show those data to the user according to
the user’s position. This method will require to implementation of some
pagination options for the client to show buildings in a performant way.
For example, the data from the server is requested as soon as the user
reaches the area of visualization and is shown to that user.

• Server driven approach could be added to a recent application which is
to hold data in the server and show those data to the user according to
the user’s position. This method will require to implementation of some
pagination options for the client to show buildings in a performant way.
For example, the data from the server is requested as soon as the user
reaches the area of visualization and is shown to that user.

• The resulting app could be achieved not only using native approaches but
also using game engines, such as Unity, and Unreal Engine. Those game
engines allow users to create realistic 3D environments containing terrains
as well as objects. Using those platforms will also be beneficial to create
an app from one platform and the outcome will be providing a running
app to both mobile platforms, such as iOS and Android. [77] [78]

54

References
[1] Filip Biljecki, Jantien Stoter, Hugo Ledoux, Sisi Zlatanova, and Arzu Çöl-

tekin. Applications of 3D City Models: State of the Art Review. IJGI,
4(4):2842–2889, December 2015.

[2] Ahmed Kareem Jebur. Application of 3D City Model and Method of Create
of 3D Model- A Review Paper. Saudi J Civ Eng, 6(4):95–107, April 2022.

[3] Mehmet Buyukdemircioglu and Sultan Kocaman. Reconstruction and Ef-
ficient Visualization of Heterogeneous 3D City Models. Remote Sensing,
12(13):2128, July 2020.

[4] Ma Leticia Jose C. Basilan, https://orcid.org/0000-0003-3105-2252,
Maycee Padilla, and https://orchid.org/0000-0001-5025-12872, maleticia-
jose.basilan@deped.gov.ph, maycee.padilla@deped.gov.ph, Department of
Education- SDO Batangas Province, Batangas, Philippines. Assessment
of teaching english language skills: Input to digitized activities for cam-
pus journalism advisers. International Multidisciplinary Research Journal,
4(4), January 2023.

[5] Guide to app architecture. https://developer.android.com/topic/architecture.
[Online; accessed 10-02-23].

[6] Ronald T Azuma. A survey of augmented reality. Presence: teleoperators
& virtual environments, 6(4):355–385, 1997.

[7] Ronald Azuma, Yohan Baillot, Reinhold Behringer, Steven Feiner, Simon
Julier, and Blair MacIntyre. Recent advances in augmented reality. IEEE
computer graphics and applications, 21(6):34–47, 2001.

[8] Alcínia Z Sampaio, Miguel M Ferreira, Daniel P Rosário, and Octávio P
Martins. 3d and vr models in civil engineering education: Construction,
rehabilitation and maintenance. Automation in construction, 19(7):819–
828, 2010.

[9] Jad Chalhoub and Steven K Ayer. Using mixed reality for electrical con-
struction design communication. Automation in construction, 86:1–10,
2018.

[10] Sanika Doolani, Callen Wessels, Varun Kanal, Christos Sevastopoulos,
Ashish Jaiswal, Harish Nambiappan, and Fillia Makedon. A review of ex-
tended reality (xr) technologies for manufacturing training. Technologies,
8(4):77, 2020.

[11] Beyond AR vs. VR: What is the Difference between AR vs. MR vs. VR vs.
XR? https://www.interaction-design.org/literature/article/beyond-ar-vs-
vr-what-is-the-difference-between-ar-vs-mr-vs-vr-vs-xr. [Online; accessed
18-03-23].

[12] Alexandru Predescu, Mariana Mocanu, and Ciprian Lupu. ARMAX: A
Mobile Geospatial Augmented Reality Platform for Serious Gaming. In
2019 IEEE 15th International Conference on Intelligent Computer Com-
munication and Processing (ICCP), pages 313–318, Cluj-Napoca, Romania,
September 2019. IEEE.

[13] Cristina Portalés, José Luis Lerma, and Santiago Navarro. Augmented
reality and photogrammetry: A synergy to visualize physical and virtual
city environments. ISPRS Journal of Photogrammetry and Remote Sensing,
65(1):134–142, January 2010.

[14] Samaneh Sanaeipoor and Khashayar Hojjati Emami. Smart City: Explor-
ing the Role of Augmented Reality in Placemaking. In 2020 4th Inter-
national Conference on Smart City, Internet of Things and Applications
(SCIOT), pages 91–98, Mashhad, Iran, September 2020. IEEE.

[15] Fabio Latino, Vasilis Naserentin, Erik Öhrn, Zhao Shengdong, Morten
Fjeld, Liane Thuvander, and Anders Logg. Virtual City@Chalmers: Cre-
ating a prototype for a collaborative early stage urban planning AR appli-
cation.

[16] Arnis Cirulis and Kristaps Brigis Brigmanis. 3D Outdoor Augmented Re-
ality for Architecture and Urban Planning. Procedia Computer Science,
25:71–79, 2013.

[17] Mohamed Zahlan Abdul Muthalif, Davood Shojaei, and Kourosh Khoshel-
ham. A review of augmented reality visualization methods for subsurface
utilities. Advanced Engineering Informatics, 51:101498, January 2022.

[18] Chenliang Wang, Kejia Huang, and Wenjiao Shi. An Accurate and Efficient
Quaternion-Based Visualization Approach to 2D/3D Vector Data for the
Mobile Augmented Reality Map. IJGI, 11(7):383, July 2022.

[19] Julian Keil, Dennis Edler, Thomas Schmitt, and Frank Dickmann. Creat-
ing Immersive Virtual Environments Based on Open Geospatial Data and
Game Engines. KN J. Cartogr. Geogr. Inf., 71(1):53–65, March 2021.

[20] Raghav Sood. Pro Android Augmented Reality. Apress, 2012.

[21] George Plakas, ST Ponis, K Agalianos, E Aretoulaki, and SP Gayialis.
Augmented reality in manufacturing and logistics: Lessons learnt from
a real-life industrial application. Procedia Manufacturing, 51:1629–1635,
2020.

[22] Daniel Broschart and Peter Zeile. Architecture: augmented reality in archi-
tecture and urban planning. Peer reviewed proceedings of digital landscape
architecture, 2015:111, 2015.

56

[23] Hsin-Kai Wu, Silvia Wen-Yu Lee, Hsin-Yi Chang, and Jyh-Chong Liang.
Current status, opportunities and challenges of augmented reality in edu-
cation. Computers & education, 62:41–49, 2013.

[24] Nedal Sawan, Ahmed Eltweri, Caterina De Lucia, Luigi Pio Leonardo Cava-
liere, Alessio Faccia, and Narcisa Roxana Moşteanu. Mixed and augmented
reality applications in the sport industry. In 2020 2nd International Con-
ference on E-Business and E-commerce Engineering, pages 55–59, 2020.

[25] Jinhyuk Choi, Bongkyu Jang, and Gerard J Kim. Organizing and pre-
senting geospatial tags in location-based augmented reality. Personal and
Ubiquitous Computing, 15:641–647, 2011.

[26] G Bharath, Rupa Ch, M Karthik, Manish Chowdary, et al. Revelation
of geospatial information using augmented reality. In 2021 Sixth Inter-
national Conference on Wireless Communications, Signal Processing and
Networking (WiSPNET), pages 303–308. IEEE, 2021.

[27] Gerhard Schall, Stefanie Zollmann, and Gerhard Reitmayr. Smart vidente:
advances in mobile augmented reality for interactive visualization of under-
ground infrastructure. Personal and ubiquitous computing, 17:1533–1549,
2013.

[28] Thierry Badard. Geospatial service oriented architectures for mobile aug-
mented reality. In Proc. of the 1st International Workshop on Mobile
Geospatial Augmented Reality, pages 73–77. Citeseer, 2006.

[29] B St-Aubin, M Mostafavi, S Roche, and N Dedual. A 3d collaborative
geospatial augmented reality system for urban design and planning pur-
poses. In Canadian Geomatics Conference and Symposium of Commission
I, ISPRS, Convergence in Geomatics-Shaping Canada’s Competitive Land-
scape, volume 6, 2010.

[30] Gerhard Schall. Mobile augmented reality for human scale interaction with
geospatial models: The benefit for industrial applications. Springer Science
& Business Media, 2012.

[31] Bahman Jamali, Abolghasem Sadeghi-Niaraki, Reza Arasteh, et al. Appli-
cation of geospatial analysis and augmented reality visualization in indoor
advertising. International Journal of Geography and Geology, 4(1):11–23,
2015.

[32] Johan Kasperi, Malin Picha Edwardsson, and Mario Romero. Occlusion in
outdoor augmented reality using geospatial building data. In Proceedings of
the 23rd ACM symposium on virtual reality software and technology, pages
1–10, 2017.

[33] Jorge D Camba and Manuel Contero. From reality to augmented real-
ity: Rapid strategies for developing marker-based ar content using image

57

capturing and authoring tools. In 2015 IEEE Frontiers in Education Con-
ference (FIE), pages 1–6. IEEE, 2015.

[34] Kostas Anagnostou and Panagiotis Vlamos. Square ar: Using augmented
reality for urban planning. In 2011 third international conference on games
and virtual worlds for serious applications, pages 128–131. IEEE, 2011.

[35] Yassir El Filali and Salah-ddine Krit. Augmented reality types and popular
use cases. International Journal of Engineering, Science and Mathematics,
8(4):91–97, 2019.

[36] Ryan Bane and Tobias Hollerer. Interactive tools for virtual x-ray vision
in mobile augmented reality. In Third IEEE and ACM international sym-
posium on mixed and augmented reality, pages 231–239. IEEE, 2004.

[37] Benjamin Avery, Christian Sandor, and Bruce H Thomas. Improving spatial
perception for augmented reality x-ray vision. In 2009 IEEE Virtual Reality
Conference, pages 79–82. IEEE, 2009.

[38] Alan Torres-Gómez and Walterio Mayol-Cuevas. Recognition and recon-
struction of transparent objects for augmented reality. In 2014 IEEE In-
ternational Symposium on Mixed and Augmented Reality (ISMAR), pages
129–134. IEEE, 2014.

[39] Ming-Chang Wen and Shih-Chung Kang. Augmented reality and un-
manned aerial vehicle assist in construction management. In Computing
in Civil and Building Engineering (2014), pages 1570–1577. 2014.

[40] Open Geospatial Consortium Standarts.
https://www.ogc.org/standards/citygml. [Online; accessed 12-02-23].

[41] Gerhard Gröger and Lutz Plümer. Citygml–interoperable semantic 3d city
models. ISPRS Journal of Photogrammetry and Remote Sensing, 71:12–33,
2012.

[42] Tatjana Kutzner, Kanishk Chaturvedi, and Thomas H Kolbe. Citygml 3.0:
New functions open up new applications. PFG–Journal of Photogrammetry,
Remote Sensing and Geoinformation Science, 88(1):43–61, 2020.

[43] Android Distribution Chart. https://www.composables.co/tools/distribution-
chart. [Online; accessed 11-02-23].

[44] What is CityJSON. https://www.cityjson.org/. [Online; accessed 02-02-
23].

[45] Karin Starin. Combination of cityjson with postgresql, mongodb and
graphql.

58

[46] Filip Biljecki and Ken Arroyo Ohori. Automatic Semantic-preserving Con-
version Between OBJ and CityGML. Eurographics Workshop on Urban
Data Modelling and Visualisation, page 6 pages, 2015. Artwork Size: 6
pages ISBN: 9783905674804 Publisher: The Eurographics Association.

[47] Christoph Blut, Timothy Blut, and Jörg Blankenbach. CityGML goes
mobile: application of large 3D CityGML models on smartphones. Inter-
national Journal of Digital Earth, 12(1):25–42, January 2019.

[48] Thomas H Kolbe, Gerhard Gröger, Lutz Plümer, et al. Citygml–
interoperable access to 3d city models. Geo-information for disaster man-
agement, 49, 2005.

[49] Christoph Praschl and Oliver Krauss. Geo-Referenced Occlusion Models
for Mixed Reality Applications using the Microsoft HoloLens:. In Pro-
ceedings of the 17th International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications, pages 113–122,
Online Streaming, — Select a Country —, 2022. SCITEPRESS - Science
and Technology Publications.

[50] Faraliyana Mohd Hanafi, Muhammad Imzan Hassan, Hanis Rashidan, and
Alias Abdul Rahman. Web Visualization of 3D Strata Objects based on
CityJSON and LADM. 2022. Publisher: FIG International Federation of
Surveyors - Delft University of Technology.

[51] Android Application Fundamentals. https://developer.android.com/guide/components/fundamentals.
[Online; accessed 19-02-23].

[52] Android is for everyone. https://www.android.com/everyone/enabling-
opportunity/. [Online; accessed 19-02-23].

[53] Android’s Kotlin-first approach. https://developer.android.com/kotlin/first.
[Online; accessed 19-02-23].

[54] Android Studio Electric Eel 2022.1.1. https://developer.android.com/studio/releases.
[Online; accessed 19-02-23].

[55] Android Studio projects overview. https://developer.android.com/studio/projects.
[Online; accessed 28-03-23].

[56] Fundemental concepts of ARCore. https://developers.google.com/ar/develop/fundamentals.
[Online; accessed 19-02-23].

[57] James R Vallino. Interactive augmented reality.

[58] ARCore Geospatial API Documentation.
https://developers.google.com/ar/develop/geospatial . [Online; accessed
15-02-23].

59

[59] ARCore Geospatial location permissions.
https://developers.google.com/ar/develop/java/geospatial/enable. [On-
line; accessed 19-02-23].

[60] Mobile Operating System Market Share Worldwide.
https://gs.statcounter.com/os-market-share/mobile/worldwide. [On-
line; accessed 15-02-23].

[61] Christoph Blut and Jörg Blankenbach. Three-dimensional CityGML build-
ing models in mobile augmented reality: a smartphone-based pose tracking
system. International Journal of Digital Earth, 14(1):32–51, January 2021.

[62] What is Android Studio / Download Android Studio.
https://developer.android.com/studio. [Online; accessed 15-02-23].

[63] ARCore by Google. https://developers.google.com/ar. [Online; accessed
15-02-23].

[64] ARCore documentation. https://developers.google.com/ar/develop . [On-
line; accessed 15-02-23].

[65] Berlin 3D - Downloadportal. https://www.businesslocationcenter.de/berlin3d-
downloadportal//export. [Online; accessed 05-02-23].

[66] FME | Data Integration Platform. https://www.safe.com/fme/. [Online;
accessed 15-02-23].

[67] Material Design. https://m2.material.io/design. [Online; accessed 19-02-
23].

[68] How to design a better bottom navbar (Tab bar)?
https://uxplanet.org/how-to-design-a-better-bottom-navbar-
5127c8b8102f. [Online; accessed 15-02-23].

[69] Figma Design Tool. https://www.figma.com/. [Online; accessed 19-02-23].

[70] How to migrate splash screens. https://developer.android.com/develop/ui/views/launch/splash-
screen/migrate. [Online; accessed 19-02-23].

[71] Android Fragments. https://developer.android.com/reference/androidx/fragment/app/Fragment.
[Online; accessed 28-03-23].

[72] Request location permissions. https://developer.android.com/training/location/permissions.
[Online; accessed 19-02-23].

[73] ARCore Geospatial Codelab project. https://github.com/google-ar/arcore-
android-sdk/tree/master/samples/geospatialjava. [Online; accessed10 −
02− 23].

[74] ARCore Geospatial Sample. https://developers.google.com/ar/develop/java/geospatial/enable.
[Online; accessed 10-02-23].

60

[75] Creating of custom 3D models. https://developers.google.com/ar/develop/c/augmented-
faces/create-assets. [Online; accessed 10-02-23].

[76] Karin Jacquelien Staring. Suitability of MongoDB compared to other
databases for the storage and querying of CityJSON using GraphQL.

[77] Unity Game Engine. https://unity.com/. [Online; accessed 10-02-23].

[78] Unreal Game Engine. https://www.unrealengine.com/en-US. [Online; ac-
cessed 10-02-23].

61

